
Ardour 3 � A users' manual

Paul Davis

Carl Hetherington

�One of the secrets of life is that all that is really worth the doing is
what we do for others� � Lewis Carroll (perhaps)

�If you want to build a ship, don't drum up the men to gather wood,
divide the work and give orders. Instead, teach them to yearn for
the vast and endless sea� � Antoine de Sant Exupéry (possibly)

Contents

1 Introduction 7
1.1 What is Ardour? . 7
1.2 Typographical conventions . 7
1.3 About this manual . 7
1.4 Getting help with Ardour . 7

1.4.1 The website . 8
1.4.2 IRC . 8
1.4.3 Mailing lists . 8
1.4.4 Support expectations . 8

2 Overview 11
2.1 JACK . 11
2.2 Ardour concepts . 11

2.2.1 Sessions . 11
2.2.2 Tracks . 12
2.2.3 Regions . 12
2.2.4 Playlists . 12
2.2.5 Busses . 12
2.2.6 Plugins . 13

2.3 The Ardour interface . 13
2.3.1 The editor window . 13
2.3.2 The mixer window . 13

3 JACK 15
3.1 Introduction . 15

3.1.1 JACK and other audio software 15
3.1.2 Will my sound card work? 16
3.1.3 JACK versions . 16

3.2 Starting JACK . 16
3.2.1 Parameters . 16

3.3 Troubleshooting JACK . 17
3.3.1 I am getting lots of xruns! 17
3.3.2 I can play back but I cannot record, or vice versa 18

4 Quick start 19
4.1 Starting Ardour and creating a session 19
4.2 Adding a track and connecting it up 20
4.3 Recording . 21

3

4 CONTENTS

4.4 Playing back your recording . 22
4.5 Adding another track as an overdub 22
4.6 Mix-down . 23
4.7 Export . 24

5 The editor window 29
5.1 The playhead . 30
5.2 The toolbar . 30
5.3 Rulers . 31

5.3.1 Time displays . 31
5.3.2 Meter and tempo . 31
5.3.3 Markers . 32

5.4 Clocks . 32
5.5 Times area . 32
5.6 Edit point selector . 33
5.7 Zoom controls . 33
5.8 Grid controls . 34
5.9 Nudge controls . 34
5.10 The editor lists . 34

5.10.1 Region list . 34
5.10.2 Tracks & Busses . 35
5.10.3 Snapshots . 35
5.10.4 Track & Bus Groups . 35
5.10.5 Ranges & Marks . 36

5.11 Other buttons . 36
5.11.1 Solo . 36
5.11.2 Feedback . 36

5.12 The transport controls . 36
5.13 The summary . 37

6 Tracks and busses 41
6.1 Track and bus basics . 41

6.1.1 Types . 41
6.1.2 Adding and removing tracks 41

6.2 Track and bus groups . 42
6.3 Tracks and busses in the editor window 44

6.3.1 Busses . 44
6.3.2 Audio tracks . 45
6.3.3 MIDI tracks . 45

7 Signal �ow and the mixer 47
7.1 Signal �ow in the strip . 48

7.1.1 Input . 48
7.1.2 Processors . 49
7.1.3 Panning . 51
7.1.4 Output ports . 51
7.1.5 Monitoring . 52
7.1.6 Di�erent ways of monitoring 52

7.2 Overall signal �ow and solo / mute 54
7.2.1 The master bus . 54

CONTENTS 5

7.2.2 The monitor bus . 55
7.2.3 Mute and solo . 55
7.2.4 Without a monitor bus 55
7.2.5 With a monitor bus . 55

8 Editing 57
8.1 Basic region operations . 57

8.1.1 Splitting regions . 58
8.2 Duplicating regions . 58
8.3 Overlapping regions . 58

8.3.1 Raising and lowering overlapping regions 59
8.4 Audio region fades . 59

8.4.1 Cross-fading . 60
8.5 Audio region gain . 61
8.6 Pitch shifting . 61
8.7 Time stretching . 62
8.8 Stripping silence . 62
8.9 Rhythm Ferret . 63
8.10 Spectral analysis . 63
8.11 MIDI region editing . 64

8.11.1 Cutting, copying and pasting notes 65
8.11.2 Adding notes . 65

8.12 Other MIDI operations . 65
8.12.1 Transpose . 65
8.12.2 Insert Patch Change . 65
8.12.3 Quantize . 65
8.12.4 Fork . 66
8.12.5 List Editor . 67

8.13 MIDI data other than notes . 67

9 Automation 69
9.1 Adding an automation lane . 69
9.2 Automation modes . 70
9.3 Creating automation . 70
9.4 Editing automation . 70
9.5 MIDI `automation' . 71

10 Region operations 73

11 Con�guration 77
11.1 Per-session and global options . 77
11.2 Session properties . 77

11.2.1 Timecode . 77
11.2.2 Fades . 77
11.2.3 Media . 77
11.2.4 Monitoring . 78
11.2.5 Misc . 78

11.3 Ardour preferences . 78
11.3.1 Misc . 78
11.3.2 Transport . 79

6 CONTENTS

11.3.3 Editor . 80
11.3.4 Audio . 81
11.3.5 Solo / mute . 81
11.3.6 MIDI . 81
11.3.7 User interaction . 81
11.3.8 Interface . 81

12 Un�led miscellany 83
12.1 MIDI binding maps . 83

12.1.1 File basics . 83
12.1.2 Finding out what your MIDI control surface sends 84
12.1.3 Describing MIDI in the binding �le 84
12.1.4 Binding to Ardour . 84
12.1.5 Binding to Ardour `functions' 85
12.1.6 Binding to Ardour `actions' 86
12.1.7 Banks and banking . 86
12.1.8 Motorised controls . 87
12.1.9 A complete (though muddled) example 87

12.2 The processor list . 88
12.3 Operations on the processor list 89
12.4 Tracks and busses in detail . 90

12.4.1 Export . 90
12.4.2 Internal return . 90
12.4.3 Monitor control . 90
12.4.4 Monitor send . 90
12.4.5 Meter . 90
12.4.6 User processors . 91
12.4.7 Amp . 91
12.4.8 Main out . 91

A Advanced JACK setup 93
A.1 Using JACK with multiple sound cards 93

Chapter 1

Introduction

Hello, and welcome to Ardour!

1.1 What is Ardour?

Ardour is an open-source digital audio workstation (DAW) for Linux and Mac
OS X.

1.2 Typographical conventions

This manual uses special symbols to denote sections which contain advanced
material. The reader can skip these sections without any great loss.

� Tricky parts of the text are marked with a `bend in the road' marker. They
contain extra information which may be of interest to advanced users.

� � Especially tricky parts of the text are marked with a double bend-in-
the-road marker. Such sections will only be of interest to the com-

pletist or serious hacker.

When a menu option is discussed, it will look like this:
Menu option → Submenu option

1.3 About this manual

This manual is a work-in-progress. In other words, it is not even close to being
complete. Any suggestions for improvements, content, or comments on parts
that do not make sense are welcome to cth@carlh.net.

� For those familiar with `git', the manual's LATEX source can be obtained
from the git repository linked from http://carlh.net/ardour. Patches

to the manual are most welcome.

1.4 Getting help with Ardour

There are several places that you can get help with using Ardour.

7

8 CHAPTER 1. INTRODUCTION

1.4.1 The website

Ardour's website (http://ardour.org/) contains many useful resources, in-
cluding a list of frequently-asked questions, a forum and a bug and feature
request tracker.

1.4.2 IRC

Ardour's core developers and several key users are usually to be found on Inter-
net Relay Chat (IRC) on irc.freenode.net in #ardour and #ardour-osx at
pretty much any hour of the day or night. This is a live chat system that is great
for dicussing Ardour's development, design, and also user problems. There are
IRC clients for most operating systems, or you can join in directly from your
web browser by choosing Help → Chat from within Ardour.

If you join the IRC rooms, here are a few tips:

• Don't ask to ask, just ask � rather than saying `Is it ok if I ask a question?',
just ask your question � it is not considered rude to do so. Then wait:
your answer may come in seconds, minutes, hours or never, depending on
who is around and what time of the day it is wherever they happen to be
in the world. In particular, make sure you do wait; do not get upset if you
don't get an answer straight away.

• Don't be o�ended if no-one replies � although other users may be logged
into the channel, they may well be coding Ardour, cooking, reading XKCD,
cleaning their ostrabagalous devices, or any number of other things.

• Don't paste large amounts of text into the channel � if you have more
than a couple of lines of output from some command that you want to
show everyone, use a site like pastebin.com. You can copy your text into
that site, and it will give you a web address that you can paste into the
channel.

• Be as detailed as possible � if you have a problem, tell us what version
of Ardour you are using, and what operating system you are running on
(Linux, OS X or Windows).

1.4.3 Mailing lists

There is a Ardour users mailing list, where various discussions about Ardour
(and recording in general) take place. There are links to join the list on Ardour's
website.

1.4.4 Support expectations

As Ardour evolves, it becomes a serious alternative to commercial products
for more and more people. We see the download counts increase for each new
release, and the volume of tra�c on the mailing lists is growing. That's lovely, of
course. We work on Ardour without the accoutrements of a `normal' software
corporation, so whenever a new user �nds our work useful and worthwile, it
makes what we do seem meaningful and worth continuing with.

1.4. GETTING HELP WITH ARDOUR 9

Unfortunately, it's not all roses we receive. With wider public interest and
more users, there's bound to be people who are disappointed in Ardour. We
believe, however, that it's only because most newcomers do not realize what to
expect.

The development team

Many users probably don't realize it, but the development team driving Ardour
forward is very small for the amazingly complex piece of software that is a
contemporary DAW.

At this time, the main force behind Ardour is delivered by one person, with
core aid from two others, and contributions from on the order of a dozen others.
Consider that we do support, web site maintenance, documentation, feature
enhancements, debugging, as well as development.

There are more people (perhaps another dozen) pitching in with translation,
release engineering (preparing Ardour for users), Mantis triaging (`Mantis' is
the bug database used to keep track of known problems, `triaging' the process
of prioritizing and verifying bugs) and other necessary tasks.

So we are always looking for new people to help, and while (unfortunately)
a common misconception is that a project like Ardour would only bene�t from
more programmers, it is not the case! Whatever your ability, we can use it.
If you are interested in spending a little time making Ardour a better DAW,
please don't hesitate to join the developer mailing list and o�er your services.

Ardour features and polish

As Ardour is getting more powerful and usable, we attract more and more
users who expect the same feature set and product polish as they'll �nd in a
commercial product such as DigiDesign's ProTools or Steinberg's Nuendo. This
isn't the right way to think about Ardour at this time.

Not that we don't want to get there, you understand, but it's simply not a
reasonable comparison. DigiDesign has spent who knows how many man-hours
worth of development on ProTools and can spend a lot on getting good docu-
mentation written, new features, debugging, installation process made smooth
and generally polish the thing till it shines. In comparison, Ardour development
is driven primarily by the interests of just a few people. Development is a full
time job for the lead developer, who also raises a three kids, �xes up his house,
has friends and even a relationship with a gorgeous woman.

Do not read that as an excuse for why Ardour lacks in comparison with other
products. Do read it as an explanation for why you should expect nothing more
from Ardour than it actually delivers. And rest assured that the developers
want and expect it to rival, or better yet, beat the proprietary DAWs. That's
why we're so committed to this development model � because we believe it's
the best way to get there.

Releases

Ardour releases are also put together by volunteers. This means that there's
usually only prebuilt binaries available for a few select platforms. While we
would like to see Ardour prebuilt for all the platforms (and operating system

10 CHAPTER 1. INTRODUCTION

versions) Ardour runs on, it's simply not possible since the volunteers doing the
release only have access to a subset of those platforms.

With speci�c regards to library dependencies: depending on the volunteer's
machine con�guration, the Ardour binary may require you to install additional
or newer libraries before it will work. If so, the installation instructions should
contain the necessary information for you to �nd those libraries. Please do
not complain about the need for these libraries � just as you might dislike
installing/upgrading the libraries, the volunteer doing the release may dislike
removing/downgrading the libraries on her machine.

If you �nd that there are no prebuilt binaries for your platform/con�guration,
and are willing to help provide packages for coming releases, please join the de-
veloper mailing list and o�er your services. It is not a requirement that you
are a programmer, but there may be a requirement for (commercial) develop-
ment tools which not everyone would have access to. If you have the time and
tools, we can probably guide you through the process, even if you don't have
the knowledge.

Support

You can join both the user and developer mailing lists and ask questions there.
You can also ask for help on IRC, and you can �le bug reports and feature
requests in Mantis. However, since support is also provided on a volunteer
basis, you must be careful not to have unreasonable expectations: you cannot
demand your questions to be answered or bugs to be �xed. In short: the people
volunteering time to Ardour only have so much time available, and they alone
decide how to spend it. Please respect their choice.

When that is said, you should know that the mailing list and the IRC channel
are friendly places � few requests go without reply. And we also do our best to
�x all bugs reported, just as we strive to implement requested features. But as
should be evident from the number of open bugs in Mantis, there's not enough
hours in the day to allow us to address all issues in a timely manner.

Chapter 2

Overview

As one might expect, Ardour is similar in many ways to many other DAWs and
also has its fair share of di�erences. This chapter gives an overview of Ardour.

2.1 JACK

Ardour is built on another piece of software called JACK1. JACK has two main
functions; �rst, it moves audio and MIDI to and from a sound card, and second,
it allows audio and MIDI to be routed between di�erent applications.

JACK provides a great deal of �exibility and power, especially when run-
ning other applications (such as soft-synthesizers or samplers) at the same time
as Ardour. It is somewhat similar to Steinberg's Rewire technology, though
broader in scope. It is even possible to use JACK to route audio and MIDI over
network connections.

JACK is so important to Ardour's operation that it earns its own discussion
in Chapter 3.

2.2 Ardour concepts

Ardour has its own names for the usual set of common DAW concepts. This
section brie�y describes some of these concepts.

2.2.1 Sessions

An Ardour session is a container for an entire project. A session may contain an
arbitrary number of tracks and busses consisting of audio and MIDI data, along
with information on processing those tracks, a mix of levels, and everything else
related to the project. A session might typically contain a song, or perhaps an
entire album or a complete live recording.

Ardour sessions are held in directories; these directories contain one or more
session �les, some or all of the audio and MIDI data and a number of other
state �les that Ardour requires. The session �le describes the structure of the
session, and holds automation data and other details.

1JACK stands for the JACK Audio Connection Kit; a pleasingly recursive acronym

11

12 CHAPTER 2. OVERVIEW

� Ardour's session �le is kept in XML format, which is advantageous as it is
somewhat human-readable, and human-editable in a crisis. Sound �les are

stored in one of a number of optional formats, and MIDI �les as SMF (standard
MIDI format).

It is also possible for Ardour sessions to reference sound and MIDI �les
outside the session directory.

Ardour has a single current session at all times; if Ardour is started without
specifying one, it will o�er to load or create one.

2.2.2 Tracks

A track is a concept common to most DAWs, and used also in Ardour. Tracks
can record audio or MIDI data to disk, and then replay it with processing. They
also allow the audio or MIDI data to be edited in a variety of di�erent ways.

In a typical pop production, one might use a track each for the kick drum,
another for the snare, more perhaps for the drum overheads and others for bass,
guitars and vocals.

Ardour can record to any number of tracks at one time, and then play those
tracks back. On playback, a track's recordings may be processed by any number
of plugins, panned, and its level altered to achieve a suitable mix.

� A track's type is really only related to the type of data that it stores on
disk. It is possible, for example, to have a MIDI track with a synthesizer

plugin which converts MIDI to audio. Even though the track remains `MIDI',
in the sense that its on-disk recordings are MIDI, its output may be audio-only.

2.2.3 Regions

A track may contain many segments of audio or MIDI. Ardour contains these
segments in things called regions, which are self-contained snippets of audio
or MIDI data. Any recording pass, for example, generates a region on each
track that is enabled for recording. Regions can be subjected to many editing
operations; they may be moved around, split, trimmed, copied, and so on.

2.2.4 Playlists

The details of what exactly each track should play back is described by a playlist.
A playlist is simply a list of regions; each track always has an active playlist,
and can have other playlists which can be switched in and out as required.

2.2.5 Busses

Busses are another common concept in both DAWs and hardware mixers. They
are similar in many ways to tracks; they process audio or MIDI, and can run
processing plugins. The only di�erence is that their input is obtained from other
tracks or busses, rather than from disk.

One might typically use a buss to collect together the outputs of related
tracks. Consider, for example, a 3-track recording of a drum-kit; given kick,
snare and overhead tracks, it may be helpful to connect the output of each to
a bus called `drums', so that the drum-kit's level can be set as a unit, and

2.3. THE ARDOUR INTERFACE 13

processing (such as equalisation or compression) can be applied to the mix of
all tracks.

2.2.6 Plugins

Ardour allows you to process audio and MIDI using any number of plugins.
These are external pieces of code, commonly seen as VST plugins on Windows
or AU plugins on Mac OS X. Generally speaking, a plugin is written using
one (and maybe more) standards. Ardour's plugin support is for the following
standards:

• LADSPA2 � the �rst major plugin standard for Linux. Many LADSPA
plugins are availble, mostly free and open-source.

• LV2 � the successor to LADSPA. Lots of plugins have been `ported' from
LADSPA to LV2, and also many new plugins written.

• VST � Ardour supports VST plugins that have been compiled for Linux.

• AU � Mac OS X versions of Ardour support AudioUnit (AU) plugins.

Ardour has some support for running Windows VST plugins on Linux, but
this is rather complicated, extremely di�cult for the Ardour developers to de-
bug, and generally unreliable. If it is at all possible, you are strongly advised to
use native LADSPA, LV2 or Linux VST plugins on Linux, or AU on Mac OS X.

2.3 The Ardour interface

This section gives an overview of Ardour's main interface elements.

2.3.1 The editor window

The �rst of Ardour's two main windows is the Editor. A typical editor window
is shown in Figure 2.1.

The main bulk of the window is taken up with the timeline; this is the area
in which regions and automation are displayed, with time moving from left to
right. The track controls area gives a set of controls for each track, for basic
operations such as solo, mute and so on. The (optional) editor mixer is a single
mixer strip which handles the currently-selected track, and is useful for tweaks
to the mix without the need to move to the full mixer window. At the bottom of
the window is the `summary', which displays the whole session in a reduced-size
form. At the top right is a bar of useful information about the state of the
system.

The operation of the editor window is described in more detail in Chapter 5.

2.3.2 The mixer window

2An acronym of �Linux Audio Developers' Simple Plugin API�

14 CHAPTER 2. OVERVIEW

Editor mixer strip

Track controls area Summary

Transport controls

An audio region

Some automation

Toolbar

Playhead

Clocks Times Status bar

Zoom controls Grid controls Edit point selector

Nudge controls

Editor list

Rulers

Figure 2.1: A typical editor window

Chapter 3

JACK

3.1 Introduction

JACK is the JACK audio connection kit. It is a piece of software that provides
the low-level `plumbing' which allows Ardour to work. Its setup is crucial to
Ardour; Ardour will not work without it.

JACK's essential task is to route audio and MIDI data to and from a sound
card, and also between applications. It manages a set of ports, which it can
connect together in arbitrary ways. Figure ?? gives a diagram of a moderately
complex JACK session.

jackaudio.org/pulseaudio_and_jack

� JACK is not limited to the standard concept of the `sound card'. You
may choose to have no sound card at all (in which case JACK can run

in `dummy' mode). It is also possible to send signals to and from JACK over
TCP/IP networks using netjack. For simplicity, this manual will assume that
the user has a sound card in the conventional sense.

3.1.1 JACK and other audio software

JACK is designed so that it uses a single sound-card, and has exclusive control
of that sound-card while it is running. This is a couple of consequences. Firstly,
if the sound card used to capture audio is di�erent from the one used to play
it back, complications arise. Secondly, other software which tries to obtain
exclusive control of your sound-card, most notably `pulseaudio', may interfere
with JACK's operation.

JACK with multiple sound cards

If at all possible, it is a good idea to use JACK with a single sound card.
Correctly using more than one card at the same time is di�cult. The main
reason for this di�culty is that JACK assumes that all sound cards and programs
that it is connecting are running with synchronised sample clocks. Arranging
this is not easy if there are two cards; there will be two unsynchronised sample
clocks.

15

16 CHAPTER 3. JACK

If you accept that using multiple sound cards is going to be di�cult, and you
want to do it anyway, there are a number of approaches. These are described
in Appendix A.

3.1.2 Will my sound card work?

For your sound card to work with JACK, must have a driver suitable for the
operating system that you are running on. For Linux, this means that your card
must be supported by ALSA or FFADO; ALSA supports drivers using a wide
variety of interfaces, and FFADO is for �rewire soundcards only.

The easiest way to check on ALSA compatibility is to visit http://www.

alsa-project.org/main/index.php/Matrix:Main. This is the ALSA sound-
card matrix and describes ALSA's support for a variety of cards. For FFADO,
consult http://www.ffado.org/?q=devicesupport/list.

For Mac OS X, any card that is supported by the operating system should
work �ne.

3.1.3 JACK versions

For historical reasons, there are two `branches' of JACK that are both main-
tained, and can be used as drop-in replacements for each other. JACK1 has
version numbers like 0.121.3, and JACK2 (also known as jackdmp) has version
numbers like 1.9.8. Both implementations have their advantages and disadvan-
tages. It does not matter a great deal which one you use.

3.2 Starting JACK

Ardour can start JACK automatically when it starts; and indeed many users will
�nd that this works perfectly well. It is also possible to start JACK manually,
either at the command line or using a tool such as QJackCtl1 (on Linux) or
JackPilot2 (on Mac OS X).

3.2.1 Parameters

JACK has many parameters which a�ect its operation. Some of the more im-
portant ones are discussed here.

Sampling rate

This is the number of samples per second that JACK will process, and is im-
portant as it will govern the sampling rate that all audio applications will run
at. The chosen rate must be supported by the sound card, so values such as
44.1kHz, 48kHz, 96kHz et. cetera are typical choices. The higher the sampling
rate, the higher the theoretical audio frequency that the system can reproduce,
but also the more disk space will be consumed by audio recordings, and the
more CPU power will be required to run audio plugins.

The arguments about the best sampling rate are many, long and varied, but
can (in the humble opinion of the author) be summarised as: `if in doubt, use

1http://qjackctl.sourceforge.net
2http://www.jackosx.com

3.3. TROUBLESHOOTING JACK 17

44.1kHz, as no-one can hear the di�erence between that and anything higher
(though they may think they can)'.

Frames per period

In a move necessary for e�ciency, JACK does not process audio sample-by-
sample, but in blocks of samples. The size of these blocks can be selected when
starting JACK. A block is called a `period', and samples are often known as
`frames' in the context of JACK. If the frames per period count is made smaller,
the latency experienced by sounds going into and coming out of the computer
will be reduced; on the other hand, smaller bu�ers make the computer work
harder, and may result in other problems if the computer is not well set-up.
It is usually di�cult to get below 64 frames per period on a typical desktop
computer, and values as high as 2048 frames per bu�er are perfectly acceptable
if you do not particularly care about latency.

� The frames per period value governs how often JACK will talk to the sound
card. If, for example, JACK is set to 64 frames per period, the sound card

will tell JACK when it has 64 new frames ready; JACK (and therefore Ardour)
must then respond before the next 64 frames arrives. This has the consequences
that JACK and Ardour are awoken more often, causing a greater CPU load,
and that the requirements for JACK's response time are much more critical
with smaller period sizes. Some systems will struggle to wake JACK up in time,
making larger period sizes more reliable on those systems.

Number of periods

This value is related to the frames-per-period value above; 2 is typical, and will
work for most sound cards and systems. It is worth trying 3 here if problems
are experienced.

3.3 Troubleshooting JACK

3.3.1 I am getting lots of xruns!

An xrun is JACK's way of saying that the sound card wanted attention, but
JACK could not provide it quickly enough. The causes of xruns are many and
various. The remainder of this section lists some common causes of xruns.

Bu�er size or period count too small

The JACK `bu�er size', or number of frames per period, governs how often
JACK has to talk to the sound card; smaller bu�er sizes require JACK to com-
municate with the sound card more often and with tighter deadlines. Increasing
bu�er size can be a simple way to reduce xruns.

Similarly, if you have a lot of xruns, particularly with a USB device, try
increasing JACK's period count from 2 to 3.

18 CHAPTER 3. JACK

JACK not running with real-time privileges

JACK will try, by default, to obtain real-time scheduling privileges when it
starts. If it suceeds, it means that the operating system will treat JACK as
higher priority than some other tasks when it needs to talk to the soundcard,
which is very likely to reduce the incidence of xruns.

Some versions of Linux are careful about which tasks are allowed real-time
priviledges, as there is potential for such tasks to cause problems with the sys-
tem. As a result, JACK may fail to obtain real-time privileges, in which case
your Linux con�guration must be altered to allow JACK to get what it wants.
For Debian- and Ubuntu-based distributions, the best way is usually to add
your user to the `audio' group using

usermod -a -G audio fred

where fred is your user ID. After this, con�gure the audio group to be al-
lowed appropriate settings by editing /etc/security/limits.conf and adding

@audio - rtprio 99

@audio - memlock unlimited

to the bottom of of the �le. This allows members of the audio group to
start tasks with high real-time (RT) priority, and also allows them to lock their
memory into `real' memory; this is another step that improves real-time perfor-
mance.

After making these changes you will need to log out and log back in again
to see the e�ects.Denormals?

CPU frequency scaling?

3.3.2 I can play back but I cannot record, or vice versa

This is commonly caused by JACK's prediliction for using only one sound card.
If you are using di�erent sound cards for playback and record (which will be
the case even if you are doing playback via HDMI and recording via an on-
board sound-card) you will need to set JACK up to use multiple sound cards,
as discussed in Appendix A.

Chapter 4

Quick start

This chapter blithely assumes that you just want to use Ardour to make a basic
audio recording from a sound card, and describes how that can be achieved.
We assume that you have some sound source (such as a microphone, guitar
or whatever) plugged into one of your sound card's inputs, and a monitoring
system (speakers or headphones) connected to its outputs.

4.1 Starting Ardour and creating a session

When Ardour is run for the �rst time, it starts with the dialogue box shown in
Figure 4.1. Click Forward to continue.

As it is the �rst run, Ardour now asks a few basic questions about how it
should be set up. Its �rst question is about where to put sessions by default, as
shown in Figure 4.2. The initial choice will be the your home directory; other
locations can be selected by clicking on the button and selecting an alternative
directory.

The next choice governs how Ardour will handle monitoring, as shown in
Figure 4.3. For the purposes of this test, choose `Ask Ardour to playback
material as it is being recorded', as this makes things slightly clearer in many
cases.

Following this, Ardour asks for a choice with respect to a monitor section
(see Figure 4.4). This is explained in more detail later; for now, just choose the
default `use a master bus directly'.

At this point, if JACK has not already been started, Ardour will try to
do it for you. In order to do that, it asks about how JACK should be set up
(Figure 4.5).

There are three pages to the Audio / MIDI setup dialogue; the �rst is `de-
vice', which allows selection of the sound card that Ardour will use, the sampling
rate at which it will operate, and the bu�er size. For now, select the interface
that you are using for recording and leave other options as they are. For more
information on the options here, consult Chapter 3.

The �nal step in creating our session is to give it a name, as in Figure 4.6.
Enter something like `test' and click Open. At last, the reward should be the
editor window (Figure 4.7). The session is created!

19

20 CHAPTER 4. QUICK START

Figure 4.1: Welcome to Ardour!

4.2 Adding a track and connecting it up

The next step is to add a track to our session so that we have something to
record onto. Choose Track → Add Track or Bus... from the menu at the top of
the editor window. This will bring up a dialogue box, as shown in Figure 4.8.

For now, leave the options as they are; this will create a single monophonic
audio track. This track must now be connected to the sound card so that it can
record incoming audio.

Perhaps the easiest way to connect up this new track is to open its editor
mixer strip. Do this now by pressing Shift + E or choosing View → Show Editor
Mixer from the main menu. The top of the mixer strip that appears looks like
that in Figure 4.9.

At the top of this mixer strip there are three main buttons. The �rst, labelled
`Audio 1' (the name of the track) can be clicked on to open a menu of options for
the track. The second, marked `1' is the input selector, and the third, marked
φ, is a button to invert the track's signal.

In order to look at the connections to the input of this track, left-click on
the button marked `1' to open the input port matrix, as shown in Figure 4.10.

The port matrix is the main interface that Ardour o�ers for connecting
things together. In our example matrix, the left-hand side shows a set of ports
that generate audio data; these correspond to the sound card inputs, outputs
of Ardour busses and tracks, and other things that may exist on the system.
Di�erent groups of these ports can be seen by choosing one of the tabs on the
far left-hand side of the dialogue.

4.3. RECORDING 21

Figure 4.2: Default folder for new sessions

At the bottom of the dialogue is the input to our track.

In the example matrix, there is a green dot at the intersection of the `L' part
of `in 1+ 2' and the `Audio 1 in' port. This means that the input of the `Audio
1' track hardware input 1. Change this connection, if necessary, by clicking on
the square which corresponds to the input to record from. At this point, the
Audio 1 meter should display any signal that is being sent into the sound card.
If this is not working, something has gone wrong.

4.3 Recording

At this point, Ardour is receiving a signal from some external sound source
via the sound card. It is now possible to make a test recording. Click the
record-enable buttons (red buttons with a pink circle) in both the `Audio 1'
track controls and the main transport controls (shown in Figures 4.11 and 4.12
respectively, then click `Play' to start the transport.

Ardour is now recording; the play-head will move, and a red rectangle will
be drawn where the recording is taking place. Make a noise with your external
sound source! When you have �nished recording, click the Stop button in the
transport controls area. You should now have a region containing your recording
on the `Audio 1' track, as in Figure ??.

22 CHAPTER 4. QUICK START

Figure 4.3: Monitoring choices

4.4 Playing back your recording

Now we can play back the audio that you have just recorded. First, you will
need to move the playhead back to a point before your recorded region. Perhaps
the easiest way to do this is to click somewhere within the rulers area of the
editor window.

Once the playhead is located before your recording, click the `Play' button
(or press the spacebar on the keyboard) to start playback. You should hear
your recording through your monitor speakers or headphones.

4.5 Adding another track as an overdub

Now we can experiment further by adding an overdub to the �rst recording.
First, add a new track, as we did before, and connect it up to the input on your
soundcard which your source is connected to.

Now, record-enable the new track, move the playhead to before the previ-
ously recorded region, make sure the session is record-enabled and start the
transport (by clicking `Play' or pressing the spacebar). You should hear the
previously-recorded audio on your monitor system while the new recording is in
progress. Record something suitable over the top of your �rst region.

We now have two tracks of recorded data; you might like to add some more!

4.6. MIX-DOWN 23

Figure 4.4: Monitor section

4.6 Mix-down

We will now assume that you want to do a mix-down of your magnum opus into
a stereo WAV �le. Such a �le could later be converted to an MP3, or burned to
CD, or simply played-back as-is by some other media player on your computer.

First, we need to mix the tracks that you have recorded so that they sound
as you want them to. We will cover much more advanced mixing and processing
later, but for now we will just set the relative levels of the two tracks. The
easiest way to do this is to open the mixer window, either by selecting Window
→ Mixer or by pressing Alt + M . The mixer window is shown in Figure ??.

Here you will see a mixer strip for each track that you have recorded, and
a `master' strip. The signals for each track �ow from the recordings on disk,
through the appropriate strip, and they are then mixed together and passed
through the master strip. The bottom half of each mixer strip contains a fader ;
this controls the level of each track. You can adjust the levels of each of your
recordings by dragging the mixer strip; the green marker indicates 0dBFS (`unity
gain'), at which the level of the track will be unaltered from the recording.

Play back your recordings from the editor window, and experiment with the
levels in the mixer window until you have a sound that you are happy with.

24 CHAPTER 4. QUICK START

Figure 4.5: Audio/MIDI setup � device

4.7 Export

The �nal step is to export our recording into a stereo WAV �le. Ardour's export
options are extensive, but for now we will keep it simple. Choose Session →
Export → Export to Audio Files from the editor menu, and the Export dialogue
will open, as shown in Figure ??.

First, we have to specify the format that we will export in. Fill in the Label
�eld with some name like `WAV for CD', then click the New button beside the
Format entry in the dialogue, and click on CD, Lossless (linear PCM), WAV
and 44.1kHz entries. Then click Save to save the export preset. Enter some
label for the export in the Location section, then click Export. Ardour will mix
your session down to a WAV �le and save it in the export subdirectory of your
session folder.

4.7. EXPORT 25

Figure 4.6: New session

26 CHAPTER 4. QUICK START

Figure 4.7: . . . and �nally: the editor!

Figure 4.8: `Add Track or Bus' dialogue

4.7. EXPORT 27

Figure 4.9: Top part of a mixer strip

Figure 4.10: Input port matrix

28 CHAPTER 4. QUICK START

Figure 4.11: Track controls area

Figure 4.12: Main transport controls

Chapter 5

The editor window

A typical Ardour editor window is shown in Figure 5.1.

Editor mixer strip

Track controls area Summary

Transport controls

An audio region

Some automation

Toolbar

Playhead

Clocks Times Status bar

Zoom controls Grid controls Edit point selector

Nudge controls

Editor list

Rulers

Figure 5.1: A typical editor window

This window is where audio and MIDI material can be viewed, edited and
manipulated. It o�ers a view of your session as it progresses in time, and allows
the constituent parts (tracks, regions, playlists and so on) to be manipulated.
The contents of the main body of the window represent the session's tracks and
busses, the functionality of which is discussed in Chapter 6.

The remainder of this chapter discusses the other parts of the editor window.

29

30 CHAPTER 5. THE EDITOR WINDOW

5.1 The playhead

The red vertical line with arrow heads at either end is the called the `playhead'.
The playhead position is used in a few di�erent ways, but the most obvious is
that it lies at the point in time at which Ardour is currently playing back or
recording (or would be, were play or record to be started). It is also used in
some editing operations, as we will discuss later.

5.2 The toolbar

The toolbar is a set of buttons that change the way the mouse and keyboard
interact with the regions on the tracks, in order to perform di�erent tasks.

Figure 5.2 shows the buttons on the toolbar.

Select/move objects

Smart mode

Zoom range

Region gain

Stretch/shrink

Listen

Draw/edit MIDI notes

Edit region contentsSelect/move ranges

Figure 5.2: The Ardour toolbar

We will examine the broad function of these tools here, and go into more
detail on their operation later.

• Select/move objects (o) � used to mark regions or MIDI notes as
`selected', and to move them around (in time, or to a di�erent track, or
to a di�erent note in the case of MIDI).

• Smart mode � this provides a combination of the functionality of `se-
lect/move objects' and `select/move ranges' which may be familiar to users
of Pro Tools.

• Select/move ranges (r) � used to mark ranges of time and to manip-
ulate them.

• Zoom range (z) � this provides a mode whereby a time range can be
dragged with the mouse, and the editor window will zoom to show that
time range.

• Region gain (g) � used to edit audio gain curves on regions.

• Stretch/shrink (shortcut key `t') � allows stretching or shrinking of
regions in time (using time-stretching / pitch-shifting algorithms) or MIDI
notes.

5.3. RULERS 31

• Listen �

• Draw/edit MIDI notes � used to draw new MIDI notes into MIDI
regions, or change the length of those that are already there.

• Edit region contents (e) � this is a kind of `modi�er' for the other
tools. When selected, it means that the other tools will operate on region
contents rather than the regions themselves. For example, the select/move
tool will select and move MIDI notes rather than the regions that the notes
are in.

5.3 Rulers

The rulers section of the editor gives the option of several views; some time indi-
cations, in di�erent units, details of tempo and meter (time signature) changes,
and a display of various types of marker.

Right-clicking over the marker area o�ers a menu from which the displayed
rulers can be chosen.

5.3.1 Time displays

The time rulers that can be displayed are:

• Min:Sec � time in hours:minutes:seconds:millseconds.

• Timecode � time in hours:minutes:seconds:frames.

• Samples � time in audio samples.

• Bars:Beats � time in bars and beats.

5.3.2 Meter and tempo

Ardour provides support for considering a piece of music as having tempo and
meter. This is optional in the sense that you can happily ignore tempo and
meter settings if they are not relevant to your recording situation.

Use of tempo has two main e�ects; �rstly, Ardour can provide a metronome
`click' which can be used as reference to record to. Secondly, tempo will a�ect
the speed at which MIDI data is played back, so you can change how your
records will sound by changing the tempo.

Meter (time signature) also a�ects the metronome click, as the click will
emphasise the sound of the �rst beat of the bar. It has no e�ect on the playback
of MIDI, but adjusting time signature to match the music may make things
more intuitive to work with.

Both tempo and meter a�ect the grid that is displayed (and, optionally,
snapped to) which shows bars and beats. The grid will adjust itself to zoom
level, so the �ner details of the session may not be visible if you are zoomed too
far out.

32 CHAPTER 5. THE EDITOR WINDOW

5.3.3 Markers

Ardour supports a variety of markers for various purposes. Markers can either
be a single point in time or a range of time.

The basic marker types for general purpose use are location markers and
range markers. Location markers are a point in time, and range markers repre-
sent, as one might expect, a time range.

There are some other special marker types. CD markers are intended to
indicate track marks for CD productions. If a session has CD markers at the
start of each track, Ardour can generate a table-of-contents for use with audio
exports to allow them to be burnt to CD correctly.

Two special range markers are the `loop' and `punch' ranges. The loop range
can be played back in a loop when the play loop range button is clicked. The
punch range will be used with punch-in recording.

5.4 Clocks

This area contains two clocks, the primary and secondary. They both show the
location of the playhead, but can be set to di�erent time representations. By
default, for example, the primary clock shows position as a time-code, and the
secondary shows bars, beats and ticks.

Right-clicking on a clock pops up a menu from which you can choose the
time representation from one of the following:

• Timecode � shows time as hours:minutes:seconds:frames. The number
of frames per second is set by the session property `timecode frames-per-
second' (see Section 11.2.1).

• Bars:Beats � shows time as bars|beats|ticks (there are 1920 ticks per
beat).

• Minutes:Seconds � shows time as hours:minutes:seconds:milliseconds.

• Samples � shows time as samples (according to the sampling rate that
JACK is using).

In addition to the time, the clock shows some other information.
When set to `timecode', the clock also shows the timecode reference source;

this defaults to `INT' for internal, but can also be `JACK' if JACK is the
timecode reference, `MTC' if Ardour is syncing to MIDI time-code or `M-Clock'
if Ardour is synced to MIDI clock. To the right of the timecode reference is the
number of frames per second (su�xed by `D') if drop-frame is being used.

In `Bars:Beats' mode, the area underneath the time shows the tempo (in
beats per minute) and time signature that are currently in e�ect.

5.5 Times area

The times area of the editor window shows a few useful bits of information
about any current selection and punch in/out range. The `selection' area shows
the start, end and length of anything that is currently selected (which may be
a set of regions, a time range, or whatever). The `punch' area shows the punch

5.6. EDIT POINT SELECTOR 33

range, and also whether punch in and punch out are enabled; clicking `In' or
`Out' will enable punch in and out respectively, and the buttons will turn red
in colour to indicate that the corresponding punch is switched on.

5.6 Edit point selector

The `edit point' is a point in time within the session that is used for a variety of
di�erent editing operations. The edit point selector is used to choose where the
edit point should be; it can be either at the playhead, at the selected marker or
at the mouse pointer position.

5.7 Zoom controls

The zoom controls are shown in Figure 5.3.

Zoom out

Zoom in

Zoom to session

Zoom focus

Shrink tracks

Expand tracks

Figure 5.3: The zoom controls

The zoom in and out controls zoom the editor window in and out in terms
of time; the `zoom to session' button zooms the editor window so that the whole
session is visible. The `zoom focus button' selects a reference point to decide
which part of the session the editor window should display after the zoom. These
reference points are as follows:

• Left� the left-hand side of the editor window remains at the same point
in time.

• Right � the right-hand side of the editor window remains at the same
point in time.

• Center � the centre of the editor window remains at the same point in
time.

• Playhead� the playhead will be kept in the centre of the editor window
(where possible).

• Mouse � the point of the session that the mouse pointer is over will be
kept at the same point in the editor window.

• Edit point � the current edit point will be used as a reference.

34 CHAPTER 5. THE EDITOR WINDOW

5.8 Grid controls

Ardour has an optional `grid' which can be used to align things precisely in time.
The grid can either be disabled (by choosing `No Grid' from the drop-down box),
fully enabled (`Grid') or 'Magnetic'. When the grid is fully enabled, any object
that is moved (regions, MIDI notes or automation points, for example) will be
forcibly snapped to the grid. In `magnetic' mode, it is possible to move things
o� the grid, but when they get close to a grid intersection they will be snapped.

Next to the grid on/o� drop-down box is a selector for the interval to snap
to. There are a large variety of options here, most of which are self explanatory.
`Region starts/ends/syncs/bounds' snaps to various parts of existing regions,
which can be useful when alignment needs to be relative to existing material
rather than some arbitrary grid.

5.9 Nudge controls

The nudge controls allow objects to be `nudged', or moved by a �xed amount
backward or forward. The left and right buttons move currently selected things
either backward or forward in time, and the small clock to the left of these
buttons sets the amount of time to nudge by. As with all other clocks, you can
right-click on the clock to choose the time representation you want to use.

5.10 The editor lists

At the right of the editor is an optional area which provides one of a range of
useful lists of parts of your session. The list can be hidden or shown using the
View → Show Editor List menu item. The very right-hand side of the list gives
a selection of tabs which are used to choose the list to view. The left-hand
border of the list can be dragged to vary the width of the list.

5.10.1 Region list

The region list shows all the regions in the session. The left-hand column gives
the region name, and there are a range of times given for information. At the
right of the list are four columns of �ags that can be altered:

• L � whether the region position is locked, so that it cannot be moved.

• G � whether the region's position is `glued' to bars and beats. If so, the
region will stay at the same position in bars and beats even if the tempo
and/or time signature change.

• M � whether the region is muted, so that it will not be heard.

• O � whether the region is opaque; opaque regions `block' regions below
them from being heard, whereas `transparent' regions have their contents
mixed with whatever is underneath.

Hovering the mouse pointer over a column heading shows a tool-tip which
can be handy to remember what the columns are for.

A handy feature of the region list is that its regions can be dragged and
dropped into a suitable track in the session.

5.10. THE EDITOR LISTS 35

5.10.2 Tracks & Busses

This lists the tracks and busses that are present in the session. The list order
re�ects the order in the editor, and you can drag-and-drop track or bus names
in the editor list to re-order them in the editor. The columns in the list can all
be clicked to alter the track/bus state, and they represent the following:

• V � whether the track or bus is visible; they can be hidden, in which
case they will still play, but just not be visible in the editor; this can be
useful for keeping the display uncluttered.

• A� whether the track or bus is active; unactive tracks will not play, and
will not consume any CPU.

• I � for MIDI tracks, whether the MIDI input is enabled; this dictates
whether MIDI data from the track's inputs ports will be passed through
the track.

• R � whether the track is record-enabled.

• M � whether the track is muted.

• S � track solo state.

• SI � track solo-isolated state.

• SS � solo safe state.

As with the region list, hovering the mouse pointer over a column heading
shows a tool-tip which can be handy to remember what the columns are for.

5.10.3 Snapshots

This list gives the snapshots that exist of this session. Clicking on a snapshot
name will load that snapshot.

5.10.4 Track & Bus Groups

This shows the track/bus groups that exist in the session. These groups allow
related tracks to share various properties (such as mute or record enable state).
For full details, see Section 6.2.

The columns in this list are as follows:

• Col � the colour that the group uses for its tab in the editor.

• Name � the group name.

• V � whether the tracks and busses in the group are visible.

• On � whether the group is enabled.

• G � ticked if the constituents of the group are sharing gain settings.

• Rel � ticked if shared gains are relative.

• M � ticked if the constituents share mute status.

36 CHAPTER 5. THE EDITOR WINDOW

• S � ticked if the constituents share solo status.

• Rec � ticked if the constituents share record-enable status.

• Mon � whether the constituents share monitor settings.

• Sel � whether the constituents are selected together.

• E � whether edits to the constituents are performed to all others.

• A � whether the constituents share active status.

5.10.5 Ranges & Marks

This lists the ranges and markers that exist in the session, and allows them to
be edited. First, there is the current loop and punch range; there are three
clocks, being the start of the range, the end of the range and the length of the
range. The start and end points have a `Use PH' button beside them, which
you can click to set the corresponding position using the current position of the
playhead.

Following this is a list of the session's markers, and �nally there is a list of
the range markers.

At the bottom of the list are buttons to add new markers or ranges.
The − button beside each marker and range allows that particular mark to

be removed.

5.11 Other buttons

The editor window contains a few other buttons, which are described here.

5.11.1 Solo

This button �ashes red if any tracks are soloed, and you can click it to turn o�
all solos.

5.11.2 Feedback

It is possible to connect things up so that there are feedback loops; a simple
example might be connecting the output of a track to its input, but obviously
there are much more convoluted arrangements possible. Ardour detects any
feedback that exists, and will keep its signal processing pathways in the state
they were in just before the feedback was introduced. If Ardour is doing this, it
�ashes the feedback button to let you know that the routing in e�ect may not
be what the user interface is showing. You should remove the feedback path,
upon which this light will stop �ashing.Metronome

Audition

Internal

Auto Play

Auto Return
5.12 The transport controls

Ardour uses the term `transport' in a sense that might be similar to those who
have used tape machines. The transport is said to be `moving' (or `rolling', à la

5.13. THE SUMMARY 37

Figure 5.4: Main transport controls

tape) when Ardour is playing back or recording, and `stopped' when it is not.
The transport can be controlled using the buttons shown in Figure 5.4.

From left to right, these controls are:

• � MIDI panic � click this to send note-o�s and reset controller
messages on all MIDI channels. This is useful if, for example, a MIDI
synthesizer has a stuck note and you want to silence it.

• � Start of session�moves the playhead to the session start marker.

• � End of session � moves the playhead to the session end marker.

• � Play loop � this starts playback in looped mode, so that the
current loop range will be played repeatedly.

• � Play range or selection � if there is a selected time range, it
will be played back.

• � Play � this starts playback of the session from wherever the
playhead currently is (in other words, it sets the transport `rolling', or
moving)

• � Stop � this stops playback or record.

• �Record� if this is clicked so that it �ashes red, Ardour will record
onto record-enabled tracks when the transport is moving.

5.13 The summary

The summary area of the editor window gives an overview of your entire session.
No matter how long the session is, or how many tracks it has, the summary will
arrange itself so that the entire session is drawn within it. Inside the summary
tracks are represented as light-grey bars, regions as coloured bars, the playhead
as a vertical red line and the session start and end markers as vertical yellow
lines. On top of the summary is drawn a light-grey translucent box (the `view

38 CHAPTER 5. THE EDITOR WINDOW

box') which indicates the part of the session that is currently visible in the main
part of the editor window.

The summary is intended for two main purposes: �rstly, to get an idea of
the whole session at a glance, and secondly to navigate around it easily. You
can use the summary to do the following things:

• Dragging the view box around will move the view of the session in the
main editor window.

• Resizing the view box (by clicking and dragging on its edges) will zoom
into or out of the session.

• Clicking with Alt held down will move the playhead to the click position.

• Clicking with Shift held down will centre the editor's view at the click
position.

• Moving the mouse's scroll-wheel will scroll the editor's view.

• Moving the mouse's scroll-wheel with Ctrl held down will zoom the editor's
view in or out.

• Moving the mouse's scroll-wheel with Alt held down will scroll the editor's
view left or right.

The left, right, up and down buttons to either side of the summary allow
the editor window to be scrolled in each direction.

The status bar

This contains the following things:

• File � the type of �le that Ardour is using to record audio; this can be
change from the Media tab of the Session Properties dialogue (see Section
11.2.3).

• JACK � the sampling rate that JACK (and therefore Ardour) is using,
and the duration of one JACK period.

• Bu�ers � how full the `playback bu�ers' are (pre�xed `p'), and how
empty the `capture bu�ers' (pre�xed `c'). The playback bu�ers are areas
of memory that Ardour uses to store audio and MIDI data while it is being
passed from the disk to the audio outputs; Ardour tries to keep them full
(so that there is always data available for playback), but if you have a
lot of tracks and (or) slow disks, Ardour may not be able to keep up.
The closer the playback bu�er number is to 100%, the better. Similarly,
as data is being captured for record, Ardour tries to write it to disk; if
it cannot write the data quickly enough, the record bu�ers will �ll and
problems will occur.

• DSP� an estimate of the amount of time that Ardour is spending doing
digital signal processing (DSP) of your session. If this gets near 100% it
indicates that your system is being overloaded, and you may get glitches
or `pops' in your audio. First steps to �xing this are:

5.13. THE SUMMARY 39

� Reduce the number of plugins you are using (especially complicated
ones like reverbs).

� `Freeze' some tracks.

� Increase JACK's bu�er size.

� Get a faster computer!

� Every time JACK calls Ardour, to give it audio from inputs and take
away audio from outputs, Ardour has until the next JACK call to do
its processing. The DSP load is the percentage of this available time
that Ardour is taking up. More than 100% means that Ardour will not
have performed one lot of processing before JACK asks it to do more, so
the system is critically overloaded. As suggested above, one can increase
Ardour's chances of getting everything �nished by increasing the period
between JACK's calls (by increasing the JACK bu�er size), or by reducing
the amount of time Ardour requires to do its work (by reducing plugin
count, or using faster hardware).

� � Note that DSP load will probably not vary predictably with CPU speed.
Many other things are involved in the timing of the sound-card / JACK
/ Ardour interaction; including the real-time performance of your system
and kernel, the details of your hardware, and in some cases blind (good
or bad) luck.

• Disk � the amount of time for which you can record (on the tracks that
are currently record-enabled) given the amount of disk space you have
available. If no tracks are record-enabled, the time remaining is computed
assuming that you are recording one track.

• And �nally, the time (using the 24-hour clock), just in case you have
somewhere to be.

The various parts of the status bar can be shown or hidden by right-clicking
and choosing the elements that you want to see. This can be useful for reducing
the editor window's width for use on small screens.

40 CHAPTER 5. THE EDITOR WINDOW

Chapter 6

Tracks and busses

The basic building blocks of Ardour's sessions are tracks and busses.

Both are built on the same foundation; a bus functionality is a subset of
a track's. Both can pass audio and MIDI data, apply processing and perform
various signal routing operations. The di�erence with a track is that can record
and play back data.

6.1 Track and bus basics

6.1.1 Types

An Ardour track can be either `audio' or `MIDI'. The only real di�erence be-
tween the two is the type of data that the track will record and play back. Either
type of track can pass either type of data. Hence, for example, one might have
a MIDI track that contains an instrument plugin; such a track would contain
MIDI data, but would produce audio, since the instrument would turn the one
into the other.

In Ardour 3 busses are only used for audio.

6.1.2 Adding and removing tracks

A track or bus can be added to a session in various ways:

• Choose Track → Add Track or Bus. . . from the main menu.

• Right-click in an empty part of the track controls area.

• Click the + button underneath the list of tracks in the mixer.

Any of these actions will open the Add Track or Bus dialogue, as shown in
Figure 6.1.

From here, you can select �rstly the number of tracks or busses to add, and
the type; audio track, MIDI track or bus. There are also some options, which
vary depending on the type of thing you are creating.

These options are:

41

42 CHAPTER 6. TRACKS AND BUSSES

Figure 6.1: Add Track or Bus dialogue

• Con�guration (for audio tracks and busses) � this is the number of input
and outputs the track is set up with. You can always change these counts
later.

• Track mode (for audio tracks) � this can be `normal', `non-layered' or
`tape'.I have no idea what

non-layered nor tape

modes do • Group � tracks and busses can be put into groups so that a selected
range of operations are applied to all members of a group at the same
time (selecting record enable, or editing, for example). This option allows
you to specify an existing group to add the new track(s) or bus(ses) to, or
to create a new group to put the new things in.

• Instrument (for MIDI tracks) � this is a short-cut to allow you to create
a MIDI track with an instrument plugin already added to it. You can
achieve the same e�ect by creating a MIDI track with no plugins and
adding it yourself; this option just makes things slightly quicker.

Adding tracks will add them to both the editor and mixer windows; the
editor window shows the timeline, with any recorded data, and the mixer shows
just the processing elements of the track (its plugins, fader and so on).

Tracks and busses can be removed by selecting them, right-clicking and
choosing `Remove' from the menu. A warning dialogue will pop up, as track
removal cannot be undone; use this option with care!

6.2 Track and bus groups

Tracks and busses can be put into groups. The members of a group can be
set to share various settings, which can be useful for managing tracks which
are closely related to each other. Examples might include tracks that contain
multiple-microphone recordings of a single source (an acoustic guitar, perhaps,
or a drum-kit).

6.2. TRACK AND BUS GROUPS 43

You can put tracks and busses into groups in various ways. In the editor
window, a track's controls might look like those in Figure 6.2.

Figure 6.2: The header of a track in a group

The green tab to the left of the track header indicates that this track is in
a group called `Fred'. These tabs can be dragged in the editor window to add
to or remove tracks from groups. Alternatively, clicking the `g' button opens a
menu which gives a list of the available groups; selecting one of these groups
will add the track or bus to that group. This menu also allows a new group to
be created.

The properties of a group can be edited by right-clicking on its tab and
choosing Edit Group.... This will open the track/bus group dialogue, which is
also used when creating new groups, as shown in Figure 6.3.

Figure 6.3: The track/bus group dialogue

`Active' means that the group is being obeyed, so that the sharing of prop-
erties is applied to its members. The colour can be changed, and a�ects the
colour of the group's tab in the editor and mixer windows.

Following these options are a list of the things that the members of the group
can share. `Gain' means that the track faders will be synced to always have the

44 CHAPTER 6. TRACKS AND BUSSES

same value; `Relative' means that the gain changes are applied relative to each
member's current value. If, for example, there are two tracks in a group with
relative gain sharing, and their faders are set to −3dB and −1dB, a change of
the �rst track to a gain of −6dB will result in the second track having a gain of
−4dB (so that the di�erence in gains is the same).

`Muting', `soloing', `record enable', `route active state', `colour' and `mon-
itoring' are all straightforward; they simply mean that all member tracks or
busses will share the same settings in these respects.

`Selection' means that if a region is selected or deselected on one constituent
track, corresponding regions on other member tracks will be similarly selected.
Corresponding regions are those that are at the same position and have the
same length. Similarly, `Editing' means that edits applied to one track will
be applied at the same place on other tracks in the group. These options are
particularly useful for multi-microphone recordings, where you always want to
apply the same edits to each track.

Right-clicking on the group tab o�ers a further menu of group-related ac-
tions. Create a New Group does as its name suggests, and there is also an
option to create a new group and automatically put particular tracks into it.
Collect Group moves all the member tracks so that they are together in the
editor window, and Remove Group removes the group (and only the group, not
its members).

Add New Subgroup Bus creates a bus (giving it the name of the group) and
connects the output of each member to the new bus. In a similar way, Add
New Aux Bus adds a bus and gives each member a send to that bus. There
are two options for this, specifying whether the sends should be placed pre- or
post-fader.

Finally, Fit to Window will zoom the member tracks so that they �ll the
editor window.

6.3 Tracks and busses in the editor window

When a track or bus is added to a session it is given a representation in both
the editor and the mixer windows. Broadly speaking, the editor window shows
the track's timeline, and the mixer window its signal processing.

On the left of a track or bus in the editor is the controls area. The contents
of this area are di�erent for audio tracks, MIDI tracks and busses.

6.3.1 Busses

A typical control area for a bus is shown in Figure 6.4.

Figure 6.4: Controls for a typical bus

At the top-left of the controls is the name of the bus. This can be edited
directly to whatever is suitable, although the name must be unique within the

6.3. TRACKS AND BUSSES IN THE EDITOR WINDOW 45

session. Underneath the name is a copy of the bus' main level fader. The control
buttons to the right-hand side are:

• `m' � mute � left-click to mute the bus. Right-click to display a menu
which dictates what particular parts of the bus should be muted. detail of muting options

• `s' � solo � solo the bus. The behaviour of the solo system is described
in detail in Section ??.

• `a' � automation � click to open a menu related to automation for the
bus. Automation is covered in Chapter 9.

• `g'� group � click to open a menu related to the bus' group, as discussed
in Section 6.2 above.

6.3.2 Audio tracks

A typical control area for an audio track is shown in Figure 6.5.

Figure 6.5: Controls for a typical audio track

An audio track has the same controls as a bus, with the addition of two
extras. The red button with the pink circle is the track's record enable. When
this is clicked it will gain a bright red outline, and the track will then be recorded
onto when the main session record enable is turned on with the transport rolling.

The `p' button below the record enable will open a playlist menu when
clicked. The menu o�ers various operations related to the track's playlist. This,
as you will recall, is simply a list of the regions that the track should play.
Playlists may be swapped on a given track, and may be used by more than
one track at the same time. They are often useful to keep di�erent takes, for
example, or to allow one set of regions to be played o� two tracks with di�erent
processing. playlist menu details

6.3.3 MIDI tracks

A typical control area for a MIDI track is shown in Figure 6.6.
The MIDI track example is shown at a greater height than the other exam-

ples, as with MIDI tracks there are some control elements which only appear
when there is su�cient vertical space to �t them in.

A MIDI track has the same basic controls as an audio track, with the addition
of two extra elements. The set of buttons below the main track controls controls
the MIDI channels that should be visible in the editor. A MIDI track's data
may span any number of the 16 available MIDI channels, and sometimes it is
useful to view only a subset of those channels; di�erent instruments may, for
example, be put on di�erent MIDI channels. Clicking on a channel number
toggles its visibility. What does Force do

46 CHAPTER 6. TRACKS AND BUSSES

Scroll bar
Zoom handles

Figure 6.6: Typical MIDI track controls

To the right of the MIDI track controls is a representation of a piano key-
board called the `scroomer'. This performs a couple of functions. Firstly, the
scroll-bar controls the range of pitches that are visible on the track. Drag-
ging the scroll-bar body up and down scrolls up and down through the visible
pitches, and dragging the scroll-bar `handles' zooms in and out, so that more or
fewer pitches are visible. The piano keyboard gives a reference for the pitches
that the track is displaying. In addition, clicking on the notes will generate the
corresponding MIDI note in the track.

Chapter 7

Signal �ow and the mixer

The second of Ardour's two main windows is the mixer. A typical mixer window
is shown in Figure 7.1.

Panner

Tracks and busses

Track and bus groups

Processor box

Fader and meter

Group tab

Master bus

Figure 7.1: A typical mixer window

The mixer is roughly Ardour's equivalent of a physical mixing console with
some outboard processing. It provides an overview of the signals present in the
session, and allows them to be mixed and processed.

At the left hand side of the window there are two useful lists; at the top,
a list of the session's tracks and busses, and at the bottom a list of the track
and bus groups. Each track, bus and group has a corresponding `show' tick-box
which controls whether the corresponding item is visible in the mixer. These
tick-boxes do not a�ect visibility in the editor window.

The main body of the mixer window is taken up with mixer strips. Each

47

48 CHAPTER 7. SIGNAL FLOW AND THE MIXER

track and bus has one of these, and there is an extra one for the master bus.
An annotated single mixer strip is shown in Figure 7.2.

Toggle width Hide
Name

Input connections
Phase invert

Plugin (pre-fader)
Fader

Plugin

Plugin controls

Panner
Monitor playbackMonitor input

Record enable Solo isolate
Solo lock

Fader value Peak value

Fader Meter

Route/bus group Meter position

Output connections

Fader automation mode

Figure 7.2: A typical mixer strip

7.1 Signal �ow in the strip

This mixer strip represents the signal �ow through a single track or bus. The
input to the strip comes either from a set of JACK ports or from the regions in
a track's playlist. The signal then �ows through a set of processors, which may
include plugins (which process the signal in some way) and a fader to control
level. The signal is then panned to its output ports.

The basic signal �ow for a track is shown in Figure 7.3.

7.1.1 Input

At the top of the �gure we have two possibilities for input data; it can either
come `live' from some JACK input ports (so that it could have come from, for
example, a sound card, or perhaps another application) or it can come from
disk. If the track is record enabled, the data from the JACK inputs is stored
as-is on disk (with no processing) when we are recording. The signal that goes
into the actual strip can be chosen as either the live input or the disk; Ardour
can usually make this decision for you depending on what is going on, or you
can specify it manually if required. This signal heads into the strip's processors
before being panned and passed to the JACK outputs.

7.1. SIGNAL FLOW IN THE STRIP 49

JACK input ports

To disk

Record
enable

Recorded data from disk

Processors

Input / disk

Panner

JACK output ports

Figure 7.3: Basic track signal �ow

A bus' signal �ow is similar, except that there is no disk storage involved, so
there is no input switching; the signal always comes from its JACK input ports.

Let us examine the mixer strip with reference to this signal �ow. Towards
the top of the strip you will see the input connections button. Left-clicking this
button opens a connection editor, which allows you to set up the input connec-
tions from other JACK ports to the inputs for the strip. A typical connection
editor is shown in Figure 7.4.

In this case, we have an audio track called `Audio 2' which has a single input.
At the bottom of the connection editor you can see a label of `Audio 2 in', which
represents this input. To the left of the window are the places that this input
can come from. In the example screenshot, we can see that two JACK ports
called `in 1+2' are shown, and there is a green dot which represents a connection
between the L channel of `in 1+2' and our track input. The signal for `in 1+2'
is coming from a sound card in the computer that Ardour is running on.

The connection editor's behaviour is relatively straightforward. Signals �ow
either from left to bottom or from top to right (so generally `left to right').
The tabs down the left-hand side of the window indicate other groups of ports
that signals can be obtained from: other Ardour busses, Ardour tracks, Ardour
miscellanous outputs and Hardware. Clicking in a square in the grid makes or
breaks the corresponding connection. For more complicated connections, you
can also click and drag to `draw' connections in a line.

An alternative to using the connection editor is to right-click on the input
button. This will o�er a menu with what Ardour expects may be common
choices for your strip's input ports.

7.1.2 Processors

A `processor' in the signal �ow is a general name for something which treats the
signal in some way. Ardour provides several processors, some of which are for
internal use and are not seen in the mixer strip. In addition, processors can also
be plugins. The arrangement of processors is arbitrary, and there is no limit to
how many there can be.

The main box in the top half of the mixer strip shows the processor list.
Processors are shown as coloured rectangles, with a small `LED' beside them;

50 CHAPTER 7. SIGNAL FLOW AND THE MIXER

Figure 7.4: A mixer strip input connection editor

this indicates whether or not the plugin is enabled, and can be clicked to enable
or disable a processor. The colour of the processor depends on its location in
the sequence; processors that occur before the fader are coloured in red, and
those after are coloured green.

The processor box will always contain a blue processor called `Fader'. This
indicates where in the processor chain the main volume fader is located � this
is the fader in the bottom half of the strip.

Moving processors around

Processors can be moved around in the chain by dragging and dropping. You
can also drag processors from other strips in the mixer to copy them into this
strip.

Adding plugins

Perhaps the most common use for the processor box is to add plugins. These
are self-contained pieces of code which peform some processing on the signal;
typical examples of plugins might include compressors, equalisers, reverbs and
so on.

Plugins must be installed onto your computer before they can be used. There
are a variety of ways of doing this: on Linux, your distribution may well include
packages of plugins. Alternatively, they can be downloaded from various places
on the internet, or can be bought from commercial companies.

7.1. SIGNAL FLOW IN THE STRIP 51

Adding a plugin to a strip is as easy as right-clicking over the processor box
and choosing `New Plugin'. You can either choose one straight from the menu,
or open the `Plugin Manager' which gives a few extra facilities for quickly �nding
the right plugin. Once a plugin is selected, it will appear in the strip and start
processing the signals that �ow down the strip. Double-clicking on a plugin's
name in the processor box will open its editor window, which will typically
allow you to alter its parameters. Alternatively, right-clicking on the plugin and
selecting Controls → Show All Controls adds the plugins controls directly to
the processor box. This may be convenient for relatively simple plugins, such
as the plate reverb shown in the example screenshot.

Sends

Another type of processor that is available is the send. A send sits in the
processor list, passing signals through untouched, but also splits o� (or `sends')
the signal somewhere else. That `somewhere else' can be a set of JACK ports or
an Ardour bus. Sends are typically used for passing a track's signal to a reverb
unit, or perhaps to set up a headphone mix for an artist.

If the send is to an Ardour bus, we refer to it as an `Aux send'. Such a send
can be added to a strip by right-clicking in the processor box and following the
New Aux Send option. The submenu o�ers a list of the busses in the session,
and you can choose the one that the send should push its signal to.

Alternatively, a send to a set of JACK ports (an `external send') can be added
using New External Send. On creating an external send, a connection editor
opens so that you can connect the send to wherever it needs to go. This could
be an audio card output (for sending to some headphones or to a hardware e�ects
unit), another JACK-based application that you have running, or whatever.

Sends have a small fader in the processor box which controls the amount of
the strip's signal that they will send to their destination.

7.1.3 Panning

After passing through the processors, our signal arrives at the panner. The
panner has the task of arranging however many channels of audio we have at
the end of our processor list to pass to our outputs. This is reasonably simple
in some cases (for example if we have a mono track and stereo outputs), but
can also be very complicated (it is not immediately obvious, for example, how
one might pan a 14-channel track to 37 outputs).

Ardour will try to pick a good panner for each particular situation.

7.1.4 Output ports

Finally, the button at the very bottom of the strip sets where the output signal
from the strip will go. Frequently, this will be the master bus (and Ardour may
auto-connect new tracks and busses to the master, depending on its con�gura-
tion). As with the input ports, a left-click on the output port button will open
a connection editor, and a right-click will open a menu of common options.

52 CHAPTER 7. SIGNAL FLOW AND THE MIXER

7.1.5 Monitoring

As we discussed earlier, there are two places that a track's signal may come from:
its JACK ports, or its �les on disk. The choice of which to use at any given
time is usually made automatically by Ardour, depending on the con�guration
of its monitoring options.

`Monitoring' in Ardour is the general term used for the frequent need to
listen to signals that are coming into the computer, perhaps as they are being
recorded. Often, for example, one might be playing an instrument for a recording
and might want to hear what one is doing at the same time, perhaps along with
some other existing tracks.

7.1.6 Di�erent ways of monitoring

There are three basic ways in which monitoring may be approached:

• External monitoring � this is where Ardour plays no role in monitoring
at all. Perhaps the recording set-up has an external mixer which can
be used to set up monitor mixes, or perhaps the sound-card being used
has some `listen to the input'-style feature. This approach often has the
advantage of zero or near-zero latency. On the other hand it requires
external hardware, and the monitoring settings are not saved with the
session. See Figure 7.5 for a simple example setup.

Microphone

Sound card ArdourMixer

Headphones

Figure 7.5: External monitoring

• JACK-based `hardware' monitoring � some sound cards have the ability
to mix signals from their inputs to their outputs with zero- or low-latency.
Furthermore, on some cards these features can be controlled by JACK.
This is a nice arrangement, if the sound card supports it, as it combines
the convenience of having the monitoring controlled by Ardour with the
low latency operation of doing it externally. See Figure 7.6.

• Software monitoring � this where all monitoring is performed by Ardour;
it makes track inputs available at track outputs, under the in�uence of
various controls. This approach will almost always have more routing
�exibility than JACK-based monitoring. The disadvantage is that there
will be a latency between the input and the output which will depend
mainly on the JACK bu�er size that is being used.

7.1. SIGNAL FLOW IN THE STRIP 53

Microphone

Sound card Ardour

Headphones

Instructions via JACK

Figure 7.6: JACK-based `hardware' monitoring

Microphone

Sound card Ardour

Headphones

Figure 7.7: Software monitoring

Setting up monitoring

There are three main settings which a�ect how monitoring is performed. The
�rst is `Record monitoring handled by' in the Audio tab of the Ardour Prefer-
ences dialogue. There are two or three options here, depending on the capabil-
ities of your hardware:

• ardour � Ardour handles monitoring itself (software monitoring).

• audio hardware � Ardour does no monitoring at all, and assumes you will
do it yourself (external monitoring)

• JACK � Ardour will ask JACK to, in turn, ask the sound card to handle
monitoring. This option is only available if it is supported by your sound
card (hardware monitoring).

The other two settings are more complex; one is `Tape machine mode', in
the same dialogue, and the other is `Monitoring automatically follows transport
state (`auto-input')' setting in Session Properties.

Monitoring is also somewhat dependent on the state of the track's record-
enable button, the session record enable button, and whether or not the trans-
port is rolling.

54 CHAPTER 7. SIGNAL FLOW AND THE MIXER

Monitoring in software or hardware monitoring modes

If Ardour is set to `external monitoring', the explanation of Ardour's monitoring
behaviour is simple: it does not do any. In the other two modes, things are more
complex.

Monitoring in non-tape-machine mode

This section describes what happens when Ardour is not set to tape-machine
mode.

Consider �rst the case when a track is record-enabled. In this situation,
it will always monitor the live input unless the session is not record-enabled,
auto-input is enabled, and the transport is rolling.

When a track is not record-enabled, the track will play back its contents
from disc unless the transport is stopped and auto-input is enabled. In this
case, the track monitors its live input.

Monitoring in tape-machine mode

In tape-machine mode, things are slightly simpler; when a track is record-
enabled, its behaviour is the same as in non-tape-machine mode: it will always
monitor the live input unless the session is not record-enabled, auto-input is
enabled, and the transport is rolling.

When a track is not record-enabled, however, the track will always just play
back its contents from disk; the live input will never be monitored.Some more rational

explanation of why

things are like this

Metering! 7.2 Overall signal �ow and solo / mute

The previous section explores how signals �ow within individual mixer strips.
This section discusses the wider picture of signal �ow within Ardour as a whole,
particularly with regard to track soloing and muting.

7.2.1 The master bus

Ardour sessions always contain a special bus called the master bus. Mostly, this
is like a normal bus, but it has some special properties:

• Ardour can be con�gured to connect other tracks and busses to the master
bus automatically.

• The master bus' mixer strip is always displayed at the right-hand-side of
the mixer window.

Typically, most of a session's tracks will send their output to the master
bus, and the output from the master bus will be connected to some ports on
a physical sound card so that the mix makes it out into the real world to be
listened to.

7.2. OVERALL SIGNAL FLOW AND SOLO / MUTE 55

7.2.2 The monitor bus

The monitor bus is an additional, optional, and more specialised type of bus.
Ardour can con�gured to use a monitor bus by ticking the `Use a monitor bus'
option in the Audio tab of the Ardour Preferences dialogue.

The monitor bus provides a quite large degree of extra control, and is an
approximation to the setup of a moderately complex mixing desk, which often
has a separate mix bus and monitor bus. In a live situation, for example, it is
common for the mix bus to be connected to the front-of-house speakers and the
monitor bus to be listened to on headphones. In a studio, one might have the
monitor bus connected to the control room outputs and the mix bus connected
to a 2-track output recorder.

7.2.3 Mute and solo

Each track and bus has two buttons which have important implications for
signal �ow: mute and solo. The behaviour of these buttons is con�gurable in
Ardour, so that they can behave in one of a few di�erent ways to suit di�erent
studio set-ups.

7.2.4 Without a monitor bus

If you are using Ardour without a monitor bus, there is only one way in which
mute and solo will work. Without a monitor bus:

• Mute on a track or bus will mute that track on the master bus, so that
it will not be heard.

• Solo on a track or bus will solo that track or bus and mute all others
except that soloing a bus will also solo any tracks or busses that feed that
bus.

7.2.5 With a monitor bus

For setups with a monitor bus, you have more options, mostly governed by the
setting of the `Solo controls are Listen controls' option in the Solo / mute tab
of `Ardour Preferences'.

With `Solo controls are Listen controls' unticked, behaviour is almost exactly
the same as the situation without a monitor bus. Mute and solo behave the
same, and the monitor bus is fed from the master bus, so it sees the same thing.

With `Solo controls are Listen controls' ticked, things change; the master and
monitor busses behave di�erently. In this mode, solo controls are more properly
called `listen' controls, and Ardour's solo buttons will change their legend from
`S' to either `A' or `P' (we'll come to that shortly) to re�ect this.

Now, without any mute or listen, the monitor bus remains fed by the master
bus. Also:

• Mute will mute the track or bus, so that it will not be heard anywhere
(neither on the master nor monitor busses), much as before.

56 CHAPTER 7. SIGNAL FLOW AND THE MIXER

• Listen will disconnect the monitor bus from the master bus, so that the
monitor bus now only receives things that are `listened'. Listen will not
perform any muting, and hence the master bus will not be a�ected by a
listened track or bus.

There are further options with when solo controls are listen controls: the part
of the track or bus from which the listen signal is obtained can be con�gured.
Underneath the `Solo controls are Listen controls' option in `Ardour Preferences'
is an option for `listen position', which can be either After-Fade Listen (AFL)
or Pre-Fade Listen (PFL). AFL, as its name suggests, obtains its signal from
some point after the track or bus' fader, and PFL from before it. The precise
point to get the signal from can further be con�gured using the `PFL signals
come from' and `AFL signals come from' options.

The solo-mute arrangement with a monitor bus is shown in Figure 7.8.

Input

Pan

Mute

PFL

AFL

Solo

Track/bus

Monitor out

anything
AFL/PFL

Master bus

Figure 7.8: Solo and mute with a monitor bus

Here we have a number of tracks or busses (in orange). Each one has an
output which feeds the master bus. In addition, each has PFL and AFL outputs;
we have a choice of which to use. PFL/AFL from each track or bus are mixed.
Then, whenever anything is set to AFL/PFL, the monitor out becomes just
those AFL/PFL feeds; the rest of the time, the monitor out is fed from the
master bus.

In this scheme Solo has no e�ect other than to mute other non-soloed tracks;
with solo (rather then listen), the monitor out is fed from the master bus.

Chapter 8

Editing

`Editing' is the name given to the process of manipulating recorded or imported
audio and MIDI data. There is some common ground between the two, but
of course there are also di�erences. This chapter discusses Ardour's editing
facilities for the two types of data.

8.1 Basic region operations

The region is the basic component of Ardour that we are concerned with editing.
Figure 8.1 shows a typical audio region.

Left channel waveform

Right channel waveform

Trim bar

Figure 8.1: An audio region

In the region we can see a representation of the waveform of the audio data
for both the left and right channels (since this is a stereo region). At the bottom
is a coloured bar containing the name of the region.

There are few basic operations that can be performed on a region. Left-
clicking and dragging will move the region; regions can be moved in time, or to
a di�erent track. Ctrl-dragging will make a copy of the region and start moving
it.

Clicking and dragging towards the left or right side of the region, or anywhere
within the `trim bar', trims the start or end of the region. Figure 8.2 shows a
trim in progress.

Right-clicking anywhere on a track (including over a region) displays the
track menu. The top entry in this menu will be the name of the region that was
clicked on, and this entry's submenu o�ers a large selection of operations which
can be applied to the region. These operations are described in Chapter ??.

57

58 CHAPTER 8. EDITING

Figure 8.2: Trimming the end of an audio region

8.1.1 Splitting regions

Regions can be split into two or more new regions using the `split' command.
This is available from the region context menu (Edit → Split), or bound to S .
The split will happen at the edit point (see Section 5.6).

The way in which Ardour decides which regions to split is a little involved
as it depends on the edit point that is being used.

If the edit point is `mouse' and you are pointing at an unselected region,
that region will be split; otherwise, regions on any tracks with selected regions
will be split if they lie at the time that the mouse pointer is at.

If the edit point is `playhead' or `marker', any regions underneath the edit
point on tracks that are either themselves selected, or contain selected regions,
will be split.

This makes more sense in practice than it does written down! In general,
the easiest approach to getting the split you want is often to select the regions
that you want to split, put the edit point at the split, then hit `S'.

If tracks which have regions to be split are themselves members of groups
(see Section 6.2) that have the `share edit' property set, the other members of
the group will also be examined for regions to split.

8.2 Duplicating regions

8.3 Overlapping regions

A track can have regions which overlap in time. When this happens, several
factors determine what output the track will generate.

A track (or really, a playlist) is considered to have its regions in a stack. That
is, they are ordered, as if they were placed in a pile. Thus, with overlapping
regions, there are regions which are above or beneath others. With the default
settings, Ardour will play the topmost region in the stack at any particular point
in time. This is shown in Figure 8.3.

Higher in stack

Time

Figure 8.3: Some overlapping regions

8.4. AUDIO REGION FADES 59

The diagram shows a collection of regions, expanded so that you can see
how they are stacked. The green areas show the bits that Ardour will play by
default.

The initial stacking order of regions is simple: the more recently the region
was added to the track (by whatever means: recording, importing, copying etc.)
the higher in the stack it will be. If this intial stacking is not what you need,
there are a few ways that it can be manipulated. Note that the initial stacking
is just that: initial. Any modi�cations that you make to stacking order will be
remembered by Ardour.

8.3.1 Raising and lowering overlapping regions

Most simply, regions can be raised or lowered in the stack using options in the
region context menu under Layering ; regions can be raised or lowered either by
one level or right to the top or bottom of the stack.

Another option is to put a region's track into stacked mode. To do this, right-
click on the track controls area and choose Layers → Stacked. In this mode,
rather than overlapping regions being drawn on top of each other, regions are
drawn more like those in Figure 8.3. This makes the arrangement of the track's
regions a little more obvious. Areas of regions that will not be played back are
shaded dark-grey to make things clearer.

In this mode, it is possible to move regions up and down in the stack just as
you would move them around normally. Dragging a region makes all the regions
on the track `jump' apart on the display; at this point, the region that you are
dragging can be moved anywhere within the stack.

8.4 Audio region fades

Audio regions have a few properties of their own, with respect to MIDI. One is
that they have optional fades at their beginning and end. A fade is e�ectively
a change in gain; the start of the region fades from −∞dB to 0dB and the end
fades from 0dB out to −∞dB.

These fades can be of any length and a variety of shapes. Figure 8.4 shows
some regions with some examples of fades.

Figure 8.4: Some regions with fades

When the mouse pointer is over an audio region, fade handles will appear
and the fades' lengths can be changed, as shown in Figure 8.5.

The shape of the fade can be changed by right-clicking over the fade; this
will pop up a menu as in Figure 8.6.

60 CHAPTER 8. EDITING

Fade-out handleFade-in handle

Fade-in

Figure 8.5: Dragging a fade-in

Figure 8.6: Fade shape menu

8.4.1 Cross-fading

Region fades have an important consequence in addition to fading their subject
region. At the same time as providing a gain change to the target region, the
fades also cause an inverse fade to any regions that lie beneath the target region
in the stack.

Consider, for example, the simple case in Figure 8.7.

Higher in stack

Time

Fade-in on top region

Corresponding fade-out

A

B

Figure 8.7: Simple cross-fade

We have two regions, A and B. For the �rst part of this time, region A plays
(its area marked green). Then we have region B, which overlaps A, and has
a fade-in. Ardour sees this fade-in and automatically performs a fade-out on
region A which is the inverse of B's fade-in. During the period of B's fade in,
both region A and B will be heard. This fade-in/fade-out arrangement has the
important e�ect that no `click' will be heard due to the discontinuity between
the waveforms of regions A and B. This arrangement, where one thing is fading
out at the same time that another is fading in, is called cross-fading.

8.5. AUDIO REGION GAIN 61

So useful is this property that Ardour will arrange for cross-fades to be
present whenever regions overlap. There are some options to decide what
form these automatically-generated crossfades will take, as described in Sec-
tion 11.2.2. The automatic crossfades can be set to span the entire overlap of
the regions involved, or to be short. In general, if you want the basic property
of `de-clicking' region overlaps, crossfades should be set to be `short'. The long-
crossfade options are more useful for artistic use of fades, where two regions
must merge slowly into each other.

8.5 Audio region gain

In addition to the fade-in and fade-out curves, audio regions can also have
variable gain throughout. This overlaps somewhat with automation (discussed
in Chapter 9), but can be useful to alter the sound of particular features within
the region.

If you want to modify audio region gain, it is important to ensure that
the option `Show gain envelopes in audio regions' is ticked in the Editor tab of
Ardour's preferences (see Section 11.3.3). This enables some useful functionality
which is otherwise turned o�.

To edit audio region gain, �rst go into `draw region gain' mode by clicking

the tool (). Now, moving the mouse pointer over an audio region will show
the gain curve; initially this will be a straight green line with two red-square
points, one at each end. The gain line can be edited in the following ways:

• Left-clicking in an empty area of the region will add a new region gain line
point.

• Dragging a point will move it.

• Dragging a line segment will move points at each end of the segment.

• Right-clicking on a point will o�er a small menu from which you can delete
the point or edit its value numerically.

• Ctrl-right-clicking on a point is a short-cut to opening its edit dialogue
box.

• Shift-right-clicking on a point will delete it.

An example region with a gain line is shown in Figure 8.8.

8.6 Pitch shifting

Ardour provides algorithms to do pitch-shifting of audio. As with any pitch-
shifting method, the results can never be perfect, but they may be useful for
correction or for artistic purposes. To pitch-shift a region, choose Edit → Pitch
Shift. . . from the context menu. This will open the Pitch Shift Audio dialogue
box, which allows you to specify the desired shift in octaves, semitones and
cents. Preserve Formants?

62 CHAPTER 8. EDITING

Figure 8.8: An audio region with a gain line

8.7 Time stretching

Time-stretching in Ardour has its own special tool. Choose the stretch/shrink

tool (). With this tool, you can click and drag the size of regions, much as you
would do when trimming them. The di�erence is that after the drag, Ardour
will time-stretch the region to the new size that you have requested. For audio
regions, a dialogue box will appear so that you can set up the parameters of the
time-stretching algorithm. For MIDI, of course, time-stretching is somewhat
easier and requires no options.

8.8 Stripping silence

With some recordings, it is desirable to remove regions which are, or are `nearly',
silent. This can be done automatically using the Edit→ Strip Silence. . . option
on the region context menu. Selecting this option will open the dialogue shown
in Figure 8.9.

Figure 8.9: The strip silence dialogue

In addition, your target regions will be overlaid with light-blue areas which
represent that the strip silence dialogue currently considers `silence'. The main
adjustment for this is the threshold; this is the level below which the region will
be considered silent. In addition, the minimum length of a silent period can be
speci�ed, so that shorter below-threshold periods will be ignored.

Finally, the dialogue o�ers a `fade length' option which speci�es what length
of fade in and out will be applied if `Apply' is pressed and some parts are
stripped out of the region.

8.9. RHYTHM FERRET 63

Clicking `Apply' will split the target regions as required, leaving only those
areas which it considers non-silent.

8.9 Rhythm Ferret

Rhythm Ferret is a tool which can analyse regions in a couple of di�erent ways,
looking for particular features (like note onsets or transients like percussion hits).
It can then perform various operations on the region based on these features.

To open the Rhythm Ferret dialogue, choose Edit → Rhythm Ferret. This
will open the dialogue box shown in Figure 8.10.

Figure 8.10: The Rhythm Ferret dialogue

First, choose the features that you want to look for; either note onset or
percussive onset. Then, clicking `Analyse' will examine region and place light
grey markers at the detected features in the region. If the features have been
detected incorrectly, you can adjust the parameters and click `Analyse' to try
again. Once the correct features have been found, you can choose what to do
with them using the `Operation' drop-down: Not sure what the

parameters do
• Split region� this will split the region into smaller regions at the feature
points.

• Snap region � don't know what these do

• Conform regions �

8.10 Spectral analysis

Though not strictly an editing operation, Ardour provides a handy window
which gives a spectral analysis of some part of your session. You can use this

64 CHAPTER 8. EDITING

to see a spectral analysis of a region by choosing Spectral Analysis. . . from the
region's context menu.

8.11 MIDI region editing

MIDI regions are somewhat di�erent to audio regions in that Ardour allows
you to edit their contents, as well as just their position and size. With a midi
region's tools you can add, move, delete and modify notes, control changes and
so on directly inside the editor window.

The �rst step to editing a MIDI region's contents is to click the `edit region

contents' tool (). On doing this, the bodies of the regions in the session will
fade out to indicate that you are now editing their contents. You can also edit
this mode by double-clicking on a MIDI region.

Figure 8.11 shows a region with `edit region contents' disabled, and Fig-
ure 8.12 after `edit region contents' has been switched on.

Figure 8.11: A MIDI region with `edit region contents' switched o�'

Figure 8.12: A MIDI region with `edit region contents' switched on

Once in this mode, many of the tools for altering regions become tools for

altering notes. With the `select/move objects' tool () you can select notes,
move them around and trim their starts and ends. Hovering the mouse over a
note will display information about its note value, channel and velocity.

Right-clicking on a selected note will display a channel selector, as shown in
Figure 8.13.

Once this is displayed, click on the MIDI channel that you want the note to
be played back on.

8.12. OTHER MIDI OPERATIONS 65

Figure 8.13: Altering a note's channel

The full gory details of a note can be edited numerically by Ctrl-right-clicking
a selected note. This opens a dialogue box with all the notes details; modifying
the values in the dialogue box will change the note.

8.11.1 Cutting, copying and pasting notes

Selected notes can be cut using Ctrl-X , copied with Ctrl-C and deleted with Delete

, just as regions can. Once cut or copied they can also be pasted; pastes will be
placed at the current edit point (see Section 5.6).

8.11.2 Adding notes

Notes can be added to MIDI regions using the `draw MIDI' tool (). Select
this tool, then click to add a note which is the same length as the current grid
interval, or click and drag to add a note of any length.

8.12 Other MIDI operations

When outside of `edit region contents mode', some other (region-wide) MIDI
operations are available from the MIDI submenu of the region context menu.

8.12.1 Transpose

This opens a dialogue box to allow transposition (shifts in pitch) of the notes
in the region.

8.12.2 Insert Patch Change
hmm

8.12.3 Quantize

The Quantize feature allows notes in the region to be snapped to a grid, to make
their timing more accurate. The Quantize. . . option opens the dialogue shown
in Figure 8.14.

The quantization options are as follows:

• Snap note start � tick the box to quantize note starts, and select the
grid that they should be snapped to.

66 CHAPTER 8. EDITING

Figure 8.14: The quantization dialogue

• Snap note end� tick the box to quantize note ends, and select the grid
that they should be snapped to.

• Threshold � if a note start or end is more than this threshold (in ticks)
away from a grid line, it will not be snapped. There are 1920 ticks per
beat.

• Strength � this is a percentage by which note starts or ends will be
pulled towards the grid; if strength is set to 100, they will be snapped
completely; any less, and they will be snapped less accurately. This can
be used to maintain some of the `human' inaccuracies in timing from a
recording of a real player.

• Swing � if ticked, this option will attempt to quantize notes so that
they `swing'. Speaking mathematically, given two input notes as shown in
Figure 8.15, the quantizer will put the second note at a time t where

t = q +
2

3

FS

100
L (8.1)

where FS is the swing factor speci�ed in the Quantize dialogue box. Hence
if FS is positive, the note will be placed later than it would be with
`straight' timing, and if FS is negative the note is placed earlier.

This feature is probably most easily explored by listening!

8.12.4 Fork

By default, when a region is copied its contents are a `clone' of the thing it was
copied from. That is to say, if you copy some region A as region B, then edit
region A, the same edits will happen to region B. This is not apparent for audio,
since the actual contents of audio regions cannot be changed, but it is important
for MIDI. If you copy a region which you then want to be independent of other
regions in the session, select the region to make independent and choose MIDI
→ Fork from the context menu.

8.13. MIDI DATA OTHER THAN NOTES 67

p q

grid lines

1st note 2nd note

r

L

Figure 8.15: The mathematics of swing

8.12.5 List Editor

To look at the MIDI note events in a region numerically, select the region and
choose MIDI → List Editor. . . from the context menu. This opens a dialogue
box containing all the region's note details, and edits you make to the numbers
will be re�ected in the region.

8.13 MIDI data other than notes

Ardour treats all MIDI note data di�erently to other types of messages (control
changes, pitch bends and so on). All the other types of data are represented
as automation data, drawn with continuous lines. The resulting `automation' is
converted back to MIDI and played back in the same stream as the note data,
and MIDI automation data is always attached to a region, so it moves in time
and is copied and pasted with its region.

Automation is covered full in Chapter 9, with reference to audio as well as
MIDI automation.

68 CHAPTER 8. EDITING

Chapter 9

Automation

Automation is the means by which many controls in Ardour (faders, plugin
controls, mute and solo, and so on) can be `automated', so that their values
change over time. This is commonly used to assist with mixing a track; vocal
levels may be brought up and down as required, for example. This chapter
describes the ways in which automation may be set up and edited.

9.1 Adding an automation lane

By default, a track has no automation. To add some, the �rst step is to open
an automation `lane' for the track. This looks much like an additional track,
but can be considered a `child' of its parent track.

To create an automation lane for an audio track, click the `a' button in the
track controls area. A menu will open which contains a list of the things which
can be automated for the track. By default, this will just be `fader' and `pan',
but if the track has any plugins, their controls will also be listed in this menu.

Choosing, for example, `fader' opens a new automation lane, as shown in
Figure 9.1.

Figure 9.1: An automation lane

69

70 CHAPTER 9. AUTOMATION

We now have an automation lane for the track `up_with_people.stereo'
which controls its fader level. The automation lane's controls area includes the
name of the parameter being automated, a handy fader for adjusting the level of
the parameter, a button to select the automation mode, and a `cross' button to
hide the automation lane. Hiding the automation lane merely removes it from
sight; it does not have any e�ect on the automation that the lane contains.

9.2 Automation modes

Clicking on the automation lane's mode button (which initially says `Manual')
o�ers four options:

• Manual � in this mode the automation will be ignored on playback.

• Play� in this mode the automation will be `played back'; in other words,
when the session is playing back, the track's controls will be manipulated
by any automation that has been set up.

• Write � when the session is being played back, any automation lanes
in `write' mode will store data from the current value of their parameter
at each instant. In other words, one way to create automation data is to
set `write' mode, play the session back, then adjust the parameter (in this
case the fader) of the track as required. Your movements will be recorded
and written as automation.

• Touch �doesn't seem to work

right now

9.3 Creating automation

There are two basic ways to create automation data. Firstly, one may use the
`write' mode, as discussed in the previous section. To see this in action for
our example fader lane, simply select `write', start the session, and move the
track's fader around a bit. When you stop the transport, an automation line
will appear on the lane to show you the moves that you made on the fader.

The other option is to draw the automation with the mouse. Clicking in

an automation lane with in `select/move objects' mode () will create a new
automation point.

9.4 Editing automation

Automation may be edited using the mouse in the automation lane. Hovering
the mouse over an automation line will put red squares at each node of the line;
these can be dragged around to move them.

You can also Ctrl-right-click to display a dialogue box to change the precise
value of an automation point, or Shift-right-click to delete a point.

Multiple points can be selected so that they can be moved as a group; either
Ctrl-left-click to select additional points, or drag a `lassoo' rectangle over a group
of points to select several at once.

9.5. MIDI `AUTOMATION' 71

Finally, points may be cut, copied and pasted, just as regions, by selecting
them and using the standard key shortcuts (Ctrl-X for cut, Ctrl-C for copy or
Ctrl-V for paste). Pastes are made at the edit point.

9.5 MIDI `automation'

As discussed in Section 8.13, a variety of MIDI message types are presented in
Ardour as automation. Lanes for these messages can be opened, just as with
audio tracks, by clicking on the `a' button in a MIDI track's control area and
selecting a parameter. The menu is much more extensive for MIDI, since there
is an option for each parameter on each MIDI channel.

Note that because of the way MIDI automation is stored (with the region),
it is not possible to draw MIDI automation in an area of the lane where its
parent track does not have a region. If you want to add automation without
any note data, simply create an empty region before adding the automation.

72 CHAPTER 9. AUTOMATION

Chapter 10

Region operations

This chapter provides a reference to the operations that can be �performed on
regions, accessible from the region submenu of the track context menu.

• Play � start playback from the start of the region.

• Loop� set the loop range to cover the region and begin looped playback.

• Rename. . . � open a dialogue box to rename the region.

• Properties. . . � open a dialogue box to view (and edit) the properties
of the region.

• Edit

� Combine

� Uncombine

� Split� split the region at the current edit point; this will only work
from the menu if the edit point is not `mouse' (as if you are selecting
a menu option, the mouse position at the time is not particularly
relevant to where an edit point should be).

� Make Mono Regions � given a multi-channel (stereo or more)
region, this option creates a new region per channel and adds those
regions to the session's region list. These regions can then be dragged
from the editor region list (see Section 5.10.1) into mono tracks as
required.

� Opaque � tick to make the region `opaque', so that regions under-
neath it on the playlist will not be heard. If the region is not opaque,
its data will be mixed with regions underneath it.

� Mute � tick to mute the region; it will not be heard

� Pitch Shift. . . � open a dialogue box to pitch-shift the region.

� Reverse � �ip the region backwards in time.

� Glose Gaps

� Place Transient

� Rhythm Ferret. . .

73

74 CHAPTER 10. REGION OPERATIONS

� Strip Silence. . .

• Position

� Move to Original Position

� Lock � this will prevent the region from being moved.

� Glue to Bars and Beats

� Snap Position To Grid

� Set Sync Position

� Remove Sync

� Nudge Forward

� Nudge Backward

� Nudge Forward by Capture O�set

� Nudge Backward by Capture O�set

• Trim

� Trim Start at Edit Point � trims the region so that it starts at
the edit point, if that makes sense.

� Trim End at Edit Point � trims the region so that it ends at the
edit point, if that makes sense.

� Trim to Loop � trims the region's start and end so that they are
at the time of the loop range's start and end respectively.

� Trim to Punch� much as `Trim to Loop' except with reference to
the loop range.

� Trim to Previous� trims the region's start point so that it lies at
the end point of the previous region in time (if possible).

� Trim to Next � trims the region's end point so that it lies at the
start point of the next region in time (if possible).

• Layering; manipulates region layers, as discussed in Section 8.3

� Raise to Top � moves the region to the top layer of the stack.

� Raise � moves the region one step closer to the top of the stack.

� Lower�moves the region one step closer to the bottom of the stack.

� Lower to Bottom � moves the region to the bottom layer of the
stack.

• Ranges

� Set Loop Range

� Set Punch

� Add Single Range Marker

� Add Range Marker Per Region

� Set Range Selection

75

• Gain

� Normlize. . . � examines the contents of the region and sets the
region's gain so that the peak value of the region is scaled to just
under 0dbFS; in other words, this makes the region as loud as it can
be without introducing distortion.

� Boost Gain

� Cut Gain

� Reset Envelope

� Envelope Active

• Fades

� Fade In

� Fade Out

� Fades

• Duplicate

� Duplicate

� Multi-Duplicate. . .

� Fill Track

• Export. . .

• Bounce (without processing)

• Bounce (with processing)

• Spectral Analysis. . . � show a frequency spectrum of the region (see
Section 8.10.

• Remove

76 CHAPTER 10. REGION OPERATIONS

Chapter 11

Con�guration

This chapter gives a reference to the ways in which Ardour's behaviour can be
customised.

11.1 Per-session and global options

Options are split into two groups: session properties (accessible from the Session
→ Properties menu) and preferences (accessible from the Edit → Preferences).

Session properties can be changed for each di�erent session that you use.
The intention is that these properties are those whose best setting depends on
the type of session you are working on.

Preferences are options which apply to all sessions. They are options which
depend on your general style of working, and the set up of your audio system. You can make session

properties sort of

`sticky' by using

template sessions11.2 Session properties

Session properties are arranged into �ve groups, whose contents are discussed
below.

11.2.1 Timecode

11.2.2 Fades

11.2.3 Media

The audio �le format section governs the sample format, bit depth and �le type
that Ardour will use when recording audio. The sample format can be one of:

• 32-bit �oating point � this is the format that Ardour uses internally for
processing, and is the highest quality; it is, arguably, of higher quality
than is required for recording things. The reason Ardour uses it internally
is that processing 32-bit �oating point signals is e�cient on modern pro-
cessors, and the high bit depth helps reduce potential problems caused by
performing processing operations on audio.

77

78 CHAPTER 11. CONFIGURATION

• 24-bit integer � as the name suggests; this is a common recording format
as it o�ers a very high dynamic range (144dB, without taking dither into
account).

• 16-bit integer � the bit depth used by standard audio CDs.

The �le format can be one of:

• Broadcast WAVE � an extension of the very common WAVE (.wav)
�le format, often used in broadcast, which adds some metadata to the
standard WAVE format.

• WAVE � the Microsoft WAVE format (commonly given a su�x of .wav)

• WAVE-64 � a version of WAVE that can handle �les of greater than 4Gb
in size.

• CAF � Core Audio Format, as developed by Apple Computer for use on
Mac OS X.

11.2.4 Monitoring

11.2.5 Misc

11.3 Ardour preferences

11.3.1 Misc

DSP CPU Utilization

If you run Ardour on a computer with more than one processor, or more than
one core, Ardour can make use of all the cores. It does this by running the
processing of di�erent tracks and busses on di�erent cores. This option allows
you to specify the number of cores or processors that Ardour should use for
signal processing. This setting will only take e�ect once you re-start Ardour.

Undo

Ardour saves information on the actions that you take in order that it can undo
them on request. This information is also stored with the session, so that it
is available after closing and re-opening a session. This is very useful if make
some mistake, or change your mind about an edit. Storing this information does
require memory and disk space, however, so these options allow you to specify
how many commands are stored in memory and how many are written to disk.

Tick verify removal of last capture if you would like Ardour to require con-
�rmation when you try to remove the last capture pass.

Enabling make periodic backups of the session �le will cause Ardour to make
a backup copy of the session �le within the session directory every 2 minutes.

11.3. ARDOUR PREFERENCES 79

Session management

The always copy imported �les option will force Ardour never to o�er you the
option to embed �les that you import; they will always be copied into the session
folder.

The default folder for new sessions is where Ardour will initially suggest
that you create new sessions.

Maximum number of recent sessions dictates the number of recent sessions
that Ardour will o�er in the startup dialogue and also in Session → Recent...

Click

This section allows you to specify the sound �les that will be used for the click;
the `emphasis' audio �le will be used for the �rst beat of the bar. The click gain
level adjusts the volume of the click.

Automation

11.3.2 Transport

• Keep record-enable engaged on stop � selecting this option will
mean that after a recording pass, the main session record-enable will re-
main switched on; otherwise it will be switched o� when the transport
stops.

• Stop recording when an xrun occurs � an xrun (see Section 3.3.1)
during recording could well mean that the recording has been corrupted by
a small (or not-so-small) pop or click. If this option is enabled, recording
will stop if an xrun is detected, which may be useful to draw the fact to
your attention. It may not be desirable on long or unattended recording
sessions!

• Create markers where xruns occur � a less drastic option for ob-
serving xruns is to enable this option, which creates a marker wherever in
a session an xrun occurs during recording. The marker makes it easy to
check out the area later and inspect the damage.

• Stop at the end of the session � if this is enabled, the transport will
stop at the end-of-session marker () does it stop during

record too?
• Do seamless looping � hmm!

• Primary clock delta to edit cursor

• Secondary clock delta to edit cursor

• Disable per-track record disarm while rolling � if this is enabled
it will be impossible to disarm a track from recording while the transport
is moving. This may be useful as a safety feature to prevent unwitting
clicks on record enable buttons from dropping tracks out of record.

• 12dB gain reduction during fast-forward and fast-rewind � fast-
forward/rewind can, by their nature, generate unpleasant-sounding tran-
sients and high-frequency content which may be trying to tired ears. With

80 CHAPTER 11. CONFIGURATION

this option enabled, Ardour will drop the output by 12dB when doing
`winds'.

11.3.3 Editor

• Link selection of regions and tracks � with this enabled, when a
region is seleted its track will be too.

• Move relevant automation when audio regions are moved�when
enabled, this means that moving a region will also move any automation
at the same time as that region.

• Show meters on tracks in the editor � enable this to show meters
next to the track controls area for each track. Disabling it will provide a
slight drop in CPU load.

• Use overlap equivalency for regions �?!

• Make rubberband selection rectangle snap to the grid� when se-
lecting things by dragging a `rubberband' or `lassoo' rectangle, this option
makes that rectangle snap to any active grid.

• Show waveforms in regions � this option draws waveforms within
audio regions. Disable it to ease the load on your CPU a bit.

• Show gain envelopes in audio regions� enable this to display region
gain lines (see Section 8.5)

• Waveform scale � this alters the scale used to plot audio waveforms
within regions between linear and logarithmic (ie in dBs).

• Waveform shape � waveforms can either be plotted traditionally (so
that negative excursions of the waveform are plotted as such), or recti�ed
(so that negative excursions are drawn as positive ones).

• Show waveforms for audio while it is being recorded � disabling
this will prevent Ardour from generating waveforms for regions during
record; again, this will lighten the load on your CPU a bit.

• Show zoom toolbar� disable this to hide the zoom toolbar, which may
help the editor window to �t better on small screens.

• Color regions using their track's color� this will draw the trim bar
of each region using the same colour as has been assigned to its track.if not?

• Update editor window during drags of the summary � if this
option is on, as you drag the view rectangle in the summary (see Sec-
tion 5.13) the editor will be updated instantly. This can be a bit slow
for complicated sessions; turning this option o� will mean that the editor
only updates when you �nish the drag.

• Synchronise editor and mixer track order � with this option en-
abled the order of the tracks in the editor window will match the order in
the mixer; with it turned o�, the track order can be di�erent.

11.3. ARDOUR PREFERENCES 81

• Synchronise editor and mixer selection � with this option turned
on, selecting a track in the editor will select it in the mixer, and vice-versa;
otherwise selections are independent.

• Name new markers � if this is set, when you click on `New Marker'
in the Locations window (or the locations editor list), the newly-created
marker's name will be set to get the keyboard focus so that you can name
it easily.

11.3.4 Audio

Bu�ering

Monitoring

Connection of tracks and busses

Denormals

Plugins

11.3.5 Solo / mute

Solo-in-place mute cut (dB) Solo controls are Listen controls Listen Position
(AFL, PFL) PFL signals come from (before pre-fader procs, pre-fader but after
pre-fader procs) AFL signals come from (immediately post-fader, after post-
fader processors before pan) Exclusive solo Show solo muting Soloing overrides
muting Mute a�ects pre-fader sends Mute a�ects post-fader sends Mute a�ects
control outputs Mute a�ects main outputs

11.3.6 MIDI

11.3.7 User interaction

11.3.8 Interface

82 CHAPTER 11. CONFIGURATION

Chapter 12

Un�led miscellany

12.1 MIDI binding maps

MIDI binding maps provide a way to set up how a physical control surface (such
as a Behringer BCF2000 or Mackie Control) interacts with Ardour. An XML
�le is created to describe the mapping, and Ardour loads it. Maps for several
devices are supplied with Ardour:

• Behringer BCF2000 (in native and Mackie Control modes)

• Behringer DDX3216

• Korg nano-Kontrol

• M-Audio Oxygen 8 v2

• M-Audio Axiom 25

• Roland SI-24

• EMU Xboard61

This chapter describes the format of the maps and how to create your own.

12.1.1 File basics

MIDI bindings are stored in �les with the su�x .map attached to their name.
The minimal content looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<ArdourMIDIBindings version="1.0.0" name="The name of this set of

bindings">

</ArdourMIDIBindings>

The remainder of the �le gives the bindings themselves, describing the two
parts of each binding: MIDI data that your controller sends, and things that
Ardour does in response.

A binding is an XML node called <Binding>. The properties of the node
give the details of the binding.

83

84 CHAPTER 12. UNFILED MISCELLANY

12.1.2 Finding out what your MIDI control surface sends

This is the most complex part of the job, but it's still not very hard. You need to
connect the control surface to an application that will show you the information
that the device sends each time you modify a knob, slider, button etc. There
are a variety of such applications; most notably gmidimon and kmidimon. You
can also use Ardour for this:

1. Select Window → MIDI Tracer.

2. Choose `MIDI Control In' from the Port selector.

3. Use the MIDI connection matrix to connect Ardour's MIDI Control In
port to the MIDI port that your control surface is sending data in on.

4. Then watch the control surface's MIDI data appear in the MIDI Tracer
window as you twiddle knobs or push buttons.

12.1.3 Describing MIDI in the binding �le

The properties for specifying the MIDI data in a <Binding> node are as follows:

• channel="c" ctl="m" � a continuous controller message m arriving on
channel c.

• channel="c" note="n"� a note-on message for note n arriving on chan-
nel c.

• channel="c" pgm="p" � a program change message to program p arriv-
ing on channel c.

• channel="c" pb="0" � a pitch bend message on channel c.

• sysex="a b c ..." � a sequence of MIDI bytes a, b, c and so on that
make up a system-exclusive message (as hexadecimal bytes)

• msg="a b c ..." � an arbitrary sequence of MIDI bytes a, b, c and so
on (as hexadecimal bytes)

12.1.4 Binding to Ardour

There are two basic kinds of bindings you can make between a MIDI message
and something inside Ardour. The �rst is a binding to a speci�c parameter of
a track or bus. The second is a binding to a function that will change Ardour's
state in some way.

Binding to track/bus controls

A track/bus binding is a binding to an individual track or bus inside Ardour.
Such a binding requires the name of the property to control, which can be one
of:

• /route/gain

• /route/solo

12.1. MIDI BINDING MAPS 85

• /route/mute

• /route/recenable

• /route/send/gain

• /route/plugin/parameter

It then requires an address. For track-level controls (solo, gain, mute, record-
enable), the address is one of:

• A number � the remote control ID of a track or bus

• The letter B followed by a number � the remote control ID of a track or
bus within the current bank

• One or more words � the name of a track or bus

For send, insert and plugin controls, the address consists of a track or bus
address followed by a number identifying the plugin or send (starting from
1). For plugin parameters, there is an additional third component: a number
identifying the plugin parameter number (starting from 1).

For solo and mute bindings, you can also add momentary="yes" after the
control address. This is useful primarily for note-on bindings � when Ardour
gets the note-on it will solo or mute the targetted track or bus, but then when
a note-o� arrives, it will un-solo or un-mute it.

The speci�cation of a track or bus binding is put inside a uri property. For
example,

<Binding channel="1" ctl="20" uri="/route/gain 2">

binds a control change on controller 20, channel 1 to the gain of track 2. As
another example

<Binding channel="4" note="20" uri="/route/recenable B5">

binds a note-on for note 20 on channel 4 to the record-enable state of the
5th track in the current bank.

12.1.5 Binding to Ardour `functions'

Rather than binding to a speci�c track/bus control, it may be useful to have a
MIDI controller able to alter some part of Ardour's state. A binding de�nition
that does this looks like this:

<Binding channel="1" note="13" function="transport-roll"/>

In this case, a note-on message for note number 13 (on channel 1) will start
the transport rolling. The following function names are available:

• transport-stop � stop the transport

• transport-roll � start the transport `rolling'

• transport-zero � move the playhead to the zero position

86 CHAPTER 12. UNFILED MISCELLANY

• transport-start � move the playhead to the start marker

• transport-end � move the playhead to the end marker

• loop-toggle � turn on loop playback

• rec-enable � enable the global record button

• rec-disable � disable the global record button

• next-bank � move track/bus mapping to the next bank (see `banks'
below)

• prev-bank � move track/bus mapping to the previous bank (see `banks'
below)

12.1.6 Binding to Ardour `actions'

You can also bind a sysex or arbitrary message to any of the items that occur in
Ardour's main menu (and its submenus). The best place to look for the (long)
list of how to address each item is in your keybindings �le, which will contain
lines that look like this:

(gtk_accel_path "<Actions>/Editor/temporal-zoom-in" "equal")

To create a binding between an arbitrary MIDI message (we'll use a note-o�
on channel 1 of MIDI note 60 (hex) with release velocity 40 (hex)), the binding
�le would contain:

<Binding msg="80 60 40" action="Editor/temporal-zoom-in"/>

The general rule, when taken an item from the keybindings �le and using it
in a MIDI binding is to simply strip the <Action> pre�x of the second �eld in
the keybinding de�nition.

12.1.7 Banks and banking

Because many modern control surfaces o�er per-track/bus controls for far fewer
tracks and busses than many users want to control, Ardour o�ers the relatively
common place concept of `banks'. Banks to allow you to relatively easily control
any number of tracks and/or busses regardless of how many faders/knobs etc.
your control surface has. To use banking, the control addresses must be speci�ed
using the bank relative format mentioned above (`B1' to identify the �rst track
of a bank of tracks, rather than `1' to identify the �rst track).

One very important extra piece of information is required to use banking:
an extra line near the start of the list of bindings that speci�es how many
tracks/busses to use per bank. If the device has 8 faders, then 8 would be a
sensible value to use for this. The line looks like this:

<DeviceInfo bank-size="8"/>

In addition, you probably want to ensure that you bind something on the
control surface to the next-bank and prev-bank functions, otherwise you and
other users will have to use the mouse and the GUI to change banks, which
rather defeats the purpose of the bindings.

12.1. MIDI BINDING MAPS 87

12.1.8 Motorised controls

If your surface's controls are motorised, so that Ardour can move your physical
controls, add

motorised="yes"

to your <DeviceInfo> node, so that it reads something like

<DeviceInfo bank-size="8" motorised="yes">

This will make Ardour more e�cient in handling your controls.

12.1.9 A complete (though muddled) example

<?xml version="1.0" encoding="UTF-8"?>

<ArdourMIDIBindings version="1.0.0" name="pc1600x transport

controls">

<DeviceInfo bank-size="16"/>

<Binding channel="1" ctl="1" uri="/route/gain B1"/>

<Binding channel="1" ctl="2" uri="/route/gain B2"/>

<Binding channel="1" ctl="3" uri="/route/send/gain B1 1"/>

<Binding channel="1" ctl="4" uri="/route/plugin/parameter B1 1

1"/>

<Binding channel="1" ctl="6" uri="/bus/gain master"/>

<Binding channel="1" note="1" uri="/route/solo B1"/>

<Binding channel="1" note="2" uri="/route/solo B2"

momentary="yes"/>

<Binding channel="1" note="15" uri="/route/mute B1"

momentary="yes"/>

<Binding channel="1" note="16" uri="/route/mute B2"

momentary="yes"/>

<Binding sysex="f0 0 0 e 9 0 5b f7" function="transport-start"/>

<Binding sysex="f0 7f 0 6 7 f7" function="rec-disable"/>

<Binding sysex="f0 7f 0 6 6 f7" function="rec-enable"/>

<Binding sysex="f0 0 0 e 9 0 53 0 0 f7" function="loop-toggle"/>

<Binding channel="1" note="13" function="transport-roll"/>

<Binding channel="1" note="14" function="transport-stop"/>

<Binding channel="1" note="12" function="transport-start"/>

<Binding channel="1" note="11" function="transport-zero"/>

<Binding channel="1" note="10" function="transport-end"/>

</ArdourMIDIBindings>

Please note that channel, controller and note numbers are speci�ed as deci-
mal numbers in the ranges 1-16, 0-127 and 0-127 respectively.

88 CHAPTER 12. UNFILED MISCELLANY

12.2 The processor list

Each track or bus in Ardour has a list of processors that operate on the audio or
MIDI signal passing through it. The operation of the processor list is illustrated
in Figure 12.1.

Processor 1

Processor 2

Processor N

Disk Input ports

Panner

Output ports

Figure 12.1: Basic structure of a track or bus

Audio or MIDI data arrives from a �le on disk, or from the input ports,
depending on the monitoring settings that are in e�ect. It is then passed through
each processor in sequence, before being panned and sent to the output ports.

The term `processor' is a very general one. It includes:

• Plugins (LADSPA, LV2, VST etc.)

• Sends and returns

• The fader

• The meter

Some processors are shown in the Ardour's mixer strip, and some are hidden.
Consider the example mixer strip shown in Figure 12.2.

Here we see �ve visible processors; they are:

1. `Autotalent'; a plugin. This is coloured red to indicate that it is pre-fader.

2. The fader. This is where the mixer fader's gain is applied.

3. Invada High Pass; a plugin.

4. 4-band parameteric; another plugin. The symbol between the high-pass
and the parametric indicates that the signal is being split from mono to
stereo, as the parametric is a stereo plugin.

12.3. OPERATIONS ON THE PROCESSOR LIST 89

Figure 12.2: The processor box

5. TAP dynamics; another plugin.

Some processors are not shown on this list:

• The meter; a processor which assesses the level of the signal at its point
in the processor chain.

• A send to the main output.

• A send to the monitor bus, if one is being used.

12.3 Operations on the processor list

The processor list in each mixer strip can be manipulated in several di�erent
ways.

Firstly, processors can be re-ordered using drag-and-drop. Dragging a pro-
cessor allows it to be moved around within the chain, or copied to another
processor list on another track or bus.

Secondly, processors can be enabled or disabled. To the left of the name of
each processor is a small LED symbol; if this is lit-up, the processor is active.
Clicking on it will deactivate the processor. It will still pass audio or MIDI
signals, but they will not be a�ected.

Finally, processors can be added to or removed from the chain. Right-clicking
the processor list does three things:

• A gap is opened up to indicate the location of the click. The gap shows
where any new processors will be inserted.

• The processor under the click is selected.

• A menu is presented giving options of what to do.

From the menu, some new processors can be inserted. These can be plugins,
sends or internal sends. The selected processor can also be deleted or copied.

90 CHAPTER 12. UNFILED MISCELLANY

12.4 Tracks and busses in detail

� � This section goes into somewhat unhealthy detail about how tracks
and busses operate internally. It may be of interest to almost nobody.

Tracks and busses in Ardour share a common basis; they are both pathways
through which audio and MIDI data can pass, experiencing various processing
and distribution along the way. The only real di�erence between a track and
a bus is that a track can either obtain its input from a JACK port, or from
�les on disk; a bus has no disk �les, so only processes signals coming from other
parts of Ardour, or from other programs via JACK.

Internally, Ardour uses the term `route' to describe a bus, with a track being
a superset of the route's functionality (to include the parts which read from and
write to disk). This chapter uses the word `route' to indicate either a track or
a bus, where the two have the same behaviour.

Not all of the processing that signals experience as they travel through routes
is visible in the Ardour user-interface. The visible parts are the plugins, the
fader, the meter and (if present) the panner. There are other invisible pro-
cesses that happen to support Ardour's internal operation. Figure 12.3 gives a
representation of the entire pathway of a route.

Audio or MIDI data starts from either a set of JACK ports or a disk �le.
Busses always take their initial data from JACK ports, and tracks can do either
depending on monitoring settings. It is possible for tracks and busses to have
no input, in which case the signal starts o� as silence.

If a track is recording, data is taken straight from the JACK input ports and
recorded; no processing on track will have any e�ect on the recorded signal.

The signal then enters the processing chain. Internally, this chain is a set of
`processors' connected in series. Some processors are put in place by Ardour,
and some are at the whim of the user.

12.4.1 Export

12.4.2 Internal return

This is the point at which internal send signals from other routes appears in the
route being sent to. This processor gathers signals from all its connected sends
and mixes them with the signal in the route at that point.

12.4.3 Monitor control

12.4.4 Monitor send

The monitor send is an internal send which sends the route's signal, whever it
is located, to the monitor bus. The monitor send is located in di�erent places,
depending on the settings for AFL and PFL.

12.4.5 Meter

The meter processor passes signals unaltered, but meters them on the way
through. It can be moved around depending on the meter point settings.

12.4. TRACKS AND BUSSES IN DETAIL 91

Export

Internal return

Meter (in input mode)

Monitor send (in PFL-before-processors mode)
Monitor control

Meter (in pre-fader mode)

Amp

Meter (in post-fader mode)

Main out

Meter (in output mode)

Monitor send (in PFL-after-processors mode

Monitor send (in AFL-before-processors mode)

Monitor send (in AFL-after-processors or solo mode)

User processors

User processors

Figure 12.3: Detailed view of a route

12.4.6 User processors

These are the `conventional' user-visible processors: plugins and internal sends
to other tracks or busses.

12.4.7 Amp

This is a gain-control element which is controlled by the fader.

12.4.8 Main out

This processor takes the route's signal, optionally pans it, and then passes it to
a set of JACK ports; this represents the main output of the route.

92 CHAPTER 12. UNFILED MISCELLANY

Appendix A

Advanced JACK setup

A.1 Using JACK with multiple sound cards

If you want to set up JACK to use multiple sound cards at the same time, there
are a number of options:

1. Use the alsa_in and alsa_out clients (Linux and ALSA only)

If you are using JACK on Linux and want to use additional devices that
have ALSA driver support (i.e. most PCI, USB and Bluetooth devices),
then this is the best option.

alsa_in and alsa_out are two clients written by Torben Hohn that make
a single ALSA device appear as a set of JACK ports. They both use Erik
de Castro Lopo's libsamplerate library to do any resampling required to
keep the audio in sync as the clocks of each device drift over time.

To use them, you start JACK as normal. Then you start an instance
of alsa_in or alsa_out for each additional device (and `direction') that
you want to use. alsa_out will create a set of ports representing the
playback capabilities of the device, and alsa_in will represent the cap-
ture/recording capabilities. These two clients must be run inside a termi-
nal window; there is no GUI for either of them. They both take arguments
very much like those of the JACK ALSA backend, with some additional
controls that a�ect the way that resampling is done. Full details are avail-
able in the manual pages for each client, which you can read in a terminal
window with the command

man alsa_in

This page covers both clients, since their arguments are identical.

Note that you can use these clients even if you are running JACK with
a FFADO-supported device. The requirement for ALSA support only
applies to the extra devices you want to use, not the one that JACK itself
is using.

2. Use the JACK2 audio adapter(s) (Jack2 only)

93

94 APPENDIX A. ADVANCED JACK SETUP

3. Using OS facilities to merge devices into a single pseudo-device

Both OS X and Linux provide ways to con�gure your machine so that it
appears to have a new audio device that is actually a combination of one
or more real devices. You can use this approach to create the con�guration
you want to use and then start up JACK using that new `pseudo' device.

• OS X

You must perform these steps as a user with administrative privi-
leges. The �rst thing to do is to open up Applications → Utilities →
Audio/MIDI Setup. Go to the main menu bar, click on Audio and
then select Open aggregate device editor. Follow the simple instruc-
tions to add the each desired playback or capture device to your new
aggregate device. Then pick a name for the new device. This is the
name you will also use to choose the device for use with JACK.

Note that there are quite a few subtle bugs with Apple's `aggregate
device' facilities. Various things can happen that will cause the device
to lose all of its playback channels or all of its capture channels,
for example. If this happens, it is generally necessary to close all
applications that are using any audio devices, and quite often a reboot
is required.

Starting with JACK2 version 1.9.6, the CoreAudio backend can now
dynamically create `aggregate devices' when needed (like when the
-C and -P arguments are used to specify the separated input and
output devices).

• Linux

You will need to use a text editor to create or add to your /.asoundrc

�le. This �le is read by any ALSA application (including JACK, if its
using the ALSA backend) and can be used to de�ne pseudo-devices
of many di�erent kinds. The key idea here is that you're going to
de�ne a new pseudo-device composed of 2 or more other devices. In
our example, we'll just focus on 2 devices being merged into 1, where
both devices have just 2 channels in and out. This is the text you
need to make sure is in /.asoundrc (below, we describe what this
does):

A.1. USING JACK WITH MULTIPLE SOUND CARDS 95

pcm.merge {

type multi;

slaves.a.pcm hw:0

slaves.a.channels 2;

slaves.b.pcm hw:1

slaves.b.channels 2;

bindings.0.slave a;

bindings.0.channel 0;

bindings.1.slave b;

bindings.1.channel 0;

bindings.2.slave a;

bindings.2.channel 1;

bindings.3.slave b;

bindings.3.channel 1;

}

Lets see what this does:

� It de�nes a new audio pseudo-device called `merge'. You can use
this name anywhere you might use the name of an ALSA audio
device, such as hw:0 or hw:HDA or hw:DSP or plughw:1.

� It names hw:0 as the �rst component (or `slave') of this pseudo-
device (slave.a.pcm) and hw:1 as the second component (slave.b.pcm)

� It states that the pseudo-device will use 2 channels from the �rst
component and 2 channels from the 2nd component.

� The lines containing binding. list, in order, which channel of
which component will correspond to the 4 channels of the pseudo-
device. In the mapping shown above, the �rst channel comes
from the �rst component, then the 2nd channel from the 2nd
component, the 3rd from the �rst component and the 4th from
the second component.

Note that numbering of devices and channels in ALSA starts at zero,
not one.

The most important and complex part of the above de�nition is the
channel mappings de�ned by the bindings lines. A full channel map-
ping de�nition consists of a pair of a lines of the following general
form:

bindings.CHANNEL_OF_PSEUDO_DEVICE.slave SLAVE_DEVICE_THAT_WILL_PROVIDE_THIS_CHANNEL

bindings.CHANNEL_OF_PSEUDO_DEVICE.channel

CHANNEL_OF_SLAVE_DEVICE_THAT_WILL_PROVIDE_THIS_CHANNEL

So the speci�c pair of lines:

bindings.0.slave a;

bindings.0.channel 0;

mean that `channel 0 of the pseudo-device will correspond to channel
0 of the �rst slave device'. Obviously by playing with this de�nition
you can create all sorts of wierd and wonderful mappings from the

96 APPENDIX A. ADVANCED JACK SETUP

real physical device channels to the pseudo-device channels. You
probably don't want to do that, though. The example above shows
the most common example: take the �rst N channels from the �rst
device, and the second M channels from the second device.

In theory, the above is enough to de�ne a new pseudo-device, but
many applications, including JACK's ALSA backend, also want to
open a "control device" associated with the audio playback device.
This is where they can �nd out (and possibly control) various hard-
ware parameters associated with the device. Unfortunately there is
no way to merge these together in the same way, so we have to provide
a "dummy" control device de�nition that will keep such applications
happy. This de�nition looks like this:

ctl.merge {

type hw

card 0

}

Notice that name following the ctl. text must be the same as the
name following pcm. in the device de�nition above. The control
device de�nition we've given here e�ectively means `if you want to
open the control device associated with �merge�, open the control
device associated with the �rst installed audio/MIDI device'. This
probably isn't right of course � `merge' involves two cards � but it
will generally work just �ne.

You can use this same approach to merge more than 2 devices - the
resulting pcm.DEVICE-NAME speci�cation will obviously include more
lines. You can also use di�erent devices than we did above, where we
just used the �rst and second installed card.

Note that you are likely to be better o� using hw:CARD device names,
rather than hw:N names, when de�ning a `multi' pseudo-device, as
explained here. But further note that if you are using multiple in-
stances of the same type of audio hardware (say, 4 RME Multiface
devices), you will have to use hw:N because every card will have the
same CARD name. In fact, with such hardware, it may be very di�cult
to ensure that hw:0 always refers to the same audio interface, because
there is no ALSA name that uniquely de�nes a particular PCI slot.
This is currently an unsolved problem when using multiple identical
devices. If you use PCI (or PCIe or PCIx or other derivatives of PCI)
devices, the chances are that the �rst card will always be the same
one, and so forth, so its not likely to be an issue. If you use several
identical USB devices, it may be a more signi�cant problem.

• Using the -P and -C arguments to a JACK backend

Several JACK backends, including the ALSA, FFADO and Core-
Audio versions, support the -P and -C arguments that can be used
to specify two di�erent devices, one for playback and one for cap-
ture/recording. You cannot use this to merge multiple devices for
playback or capture. This approach will not do any clock drift cor-
rection, so as the two devices drift over time, you may get glitches in
the audio stream. Nevertheless, it can be an easy if unreliable way to

A.1. USING JACK WITH MULTIPLE SOUND CARDS 97

set up JACK so that, for example, it records from a USB microphone
and plays back via a builtin audio device.

When using -P or -C to specify di�erent devices, do not use the -d

argument (which speci�es a single device) and do not use the -D

argument (which tells JACK to con�gure a device for playback and
capture).

Index

AU, 11
automation, 67

bus, 10

crossfade, 58

DSP, 36

edit point, 31
editor, 11, 27

fade, 57
feedback, 34
fork, 64

gain
region, 59

grid, 32
group, 40

IRC, 6

JACK, 9, 13
monitoring, 50

LADSPA, 11
list editor, 65
LV2, 11

mixer, 11
monitoring, 50

nudge, 32

overlap, 56

playhead, 28
playlist, 10
plugin, 11

quantize, 63

region, 10

region list, 32

send, 49
session, 9
snapshot, 33
spectrum, 61
summary, 35
swing, 64

toolbar, 28
track, 10
transpose, 63

VST, 11

xrun, 15

zoom, 31

98

